c67a3ae6ba
BoringSSL currently retransmits non-deterministically on an internal timer (rather than one supplied externally), so the tests currently fail flakily depending on timing. Valgrind is a common source for this. We still assume an in-order and reliable channel, but drop retransmits silently: - Handshake messages may arrive with old sequence numbers. - Retransmitted CCS records arrive from the previous epoch. - We may receive a retransmitted Finished after we believe the handshake has completed. (Aside: even in a real implementation, only Finished is possible here. Even with out-of-order delivery, retransmitted or reordered messages earlier in the handshake come in under a different epoch.) Note that because DTLS renego and a Finished retransmit are ambiguous at the record layer[*], this precludes us writing tests for DTLS renego. But DTLS renego should get removed anyway. As BoringSSL currently implements renego, this ambiguity is also a source of complexity in the real implementation. (See the SSL3_MT_FINISHED check in dtls1_read_bytes.) [*] As a further fun aside, it's also complex if dispatching renego vs Finished after handshake message reassembly. The spec doesn't directly say the sequence number is reset across renegos, but it says "The first message each side transmits in /each/ handshake always has message_seq = 0". This means that such an implementation needs the handshake message reassembly logic be aware that a Finished fragment with high sequence number is NOT an out-of-order fragment for the next handshake. Change-Id: I35d13560f82bcb5eeda62f4de1571d28c818cc36 Reviewed-on: https://boringssl-review.googlesource.com/2770 Reviewed-by: Adam Langley <agl@google.com>
1230 lines
33 KiB
Go
1230 lines
33 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// TLS low level connection and record layer
|
|
|
|
package main
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/cipher"
|
|
"crypto/ecdsa"
|
|
"crypto/subtle"
|
|
"crypto/x509"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
// A Conn represents a secured connection.
|
|
// It implements the net.Conn interface.
|
|
type Conn struct {
|
|
// constant
|
|
conn net.Conn
|
|
isDTLS bool
|
|
isClient bool
|
|
|
|
// constant after handshake; protected by handshakeMutex
|
|
handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
|
|
handshakeErr error // error resulting from handshake
|
|
vers uint16 // TLS version
|
|
haveVers bool // version has been negotiated
|
|
config *Config // configuration passed to constructor
|
|
handshakeComplete bool
|
|
didResume bool // whether this connection was a session resumption
|
|
extendedMasterSecret bool // whether this session used an extended master secret
|
|
cipherSuite uint16
|
|
ocspResponse []byte // stapled OCSP response
|
|
peerCertificates []*x509.Certificate
|
|
// verifiedChains contains the certificate chains that we built, as
|
|
// opposed to the ones presented by the server.
|
|
verifiedChains [][]*x509.Certificate
|
|
// serverName contains the server name indicated by the client, if any.
|
|
serverName string
|
|
|
|
clientProtocol string
|
|
clientProtocolFallback bool
|
|
usedALPN bool
|
|
|
|
// verify_data values for the renegotiation extension.
|
|
clientVerify []byte
|
|
serverVerify []byte
|
|
|
|
channelID *ecdsa.PublicKey
|
|
|
|
srtpProtectionProfile uint16
|
|
|
|
clientVersion uint16
|
|
|
|
// input/output
|
|
in, out halfConn // in.Mutex < out.Mutex
|
|
rawInput *block // raw input, right off the wire
|
|
input *block // application record waiting to be read
|
|
hand bytes.Buffer // handshake record waiting to be read
|
|
|
|
// DTLS state
|
|
sendHandshakeSeq uint16
|
|
recvHandshakeSeq uint16
|
|
handMsg []byte // pending assembled handshake message
|
|
handMsgLen int // handshake message length, not including the header
|
|
|
|
tmp [16]byte
|
|
}
|
|
|
|
func (c *Conn) init() {
|
|
c.in.isDTLS = c.isDTLS
|
|
c.out.isDTLS = c.isDTLS
|
|
c.in.config = c.config
|
|
c.out.config = c.config
|
|
}
|
|
|
|
// Access to net.Conn methods.
|
|
// Cannot just embed net.Conn because that would
|
|
// export the struct field too.
|
|
|
|
// LocalAddr returns the local network address.
|
|
func (c *Conn) LocalAddr() net.Addr {
|
|
return c.conn.LocalAddr()
|
|
}
|
|
|
|
// RemoteAddr returns the remote network address.
|
|
func (c *Conn) RemoteAddr() net.Addr {
|
|
return c.conn.RemoteAddr()
|
|
}
|
|
|
|
// SetDeadline sets the read and write deadlines associated with the connection.
|
|
// A zero value for t means Read and Write will not time out.
|
|
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
|
|
func (c *Conn) SetDeadline(t time.Time) error {
|
|
return c.conn.SetDeadline(t)
|
|
}
|
|
|
|
// SetReadDeadline sets the read deadline on the underlying connection.
|
|
// A zero value for t means Read will not time out.
|
|
func (c *Conn) SetReadDeadline(t time.Time) error {
|
|
return c.conn.SetReadDeadline(t)
|
|
}
|
|
|
|
// SetWriteDeadline sets the write deadline on the underlying conneciton.
|
|
// A zero value for t means Write will not time out.
|
|
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
|
|
func (c *Conn) SetWriteDeadline(t time.Time) error {
|
|
return c.conn.SetWriteDeadline(t)
|
|
}
|
|
|
|
// A halfConn represents one direction of the record layer
|
|
// connection, either sending or receiving.
|
|
type halfConn struct {
|
|
sync.Mutex
|
|
|
|
err error // first permanent error
|
|
version uint16 // protocol version
|
|
isDTLS bool
|
|
cipher interface{} // cipher algorithm
|
|
mac macFunction
|
|
seq [8]byte // 64-bit sequence number
|
|
bfree *block // list of free blocks
|
|
|
|
nextCipher interface{} // next encryption state
|
|
nextMac macFunction // next MAC algorithm
|
|
|
|
// used to save allocating a new buffer for each MAC.
|
|
inDigestBuf, outDigestBuf []byte
|
|
|
|
config *Config
|
|
}
|
|
|
|
func (hc *halfConn) setErrorLocked(err error) error {
|
|
hc.err = err
|
|
return err
|
|
}
|
|
|
|
func (hc *halfConn) error() error {
|
|
// This should be locked, but I've removed it for the renegotiation
|
|
// tests since we don't concurrently read and write the same tls.Conn
|
|
// in any case during testing.
|
|
err := hc.err
|
|
return err
|
|
}
|
|
|
|
// prepareCipherSpec sets the encryption and MAC states
|
|
// that a subsequent changeCipherSpec will use.
|
|
func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
|
|
hc.version = version
|
|
hc.nextCipher = cipher
|
|
hc.nextMac = mac
|
|
}
|
|
|
|
// changeCipherSpec changes the encryption and MAC states
|
|
// to the ones previously passed to prepareCipherSpec.
|
|
func (hc *halfConn) changeCipherSpec(config *Config) error {
|
|
if hc.nextCipher == nil {
|
|
return alertInternalError
|
|
}
|
|
hc.cipher = hc.nextCipher
|
|
hc.mac = hc.nextMac
|
|
hc.nextCipher = nil
|
|
hc.nextMac = nil
|
|
hc.config = config
|
|
hc.incEpoch()
|
|
return nil
|
|
}
|
|
|
|
// incSeq increments the sequence number.
|
|
func (hc *halfConn) incSeq(isOutgoing bool) {
|
|
limit := 0
|
|
increment := uint64(1)
|
|
if hc.isDTLS {
|
|
// Increment up to the epoch in DTLS.
|
|
limit = 2
|
|
|
|
if isOutgoing && hc.config.Bugs.SequenceNumberIncrement != 0 {
|
|
increment = hc.config.Bugs.SequenceNumberIncrement
|
|
}
|
|
}
|
|
for i := 7; i >= limit; i-- {
|
|
increment += uint64(hc.seq[i])
|
|
hc.seq[i] = byte(increment)
|
|
increment >>= 8
|
|
}
|
|
|
|
// Not allowed to let sequence number wrap.
|
|
// Instead, must renegotiate before it does.
|
|
// Not likely enough to bother.
|
|
if increment != 0 {
|
|
panic("TLS: sequence number wraparound")
|
|
}
|
|
}
|
|
|
|
// incEpoch resets the sequence number. In DTLS, it increments the
|
|
// epoch half of the sequence number.
|
|
func (hc *halfConn) incEpoch() {
|
|
limit := 0
|
|
if hc.isDTLS {
|
|
for i := 1; i >= 0; i-- {
|
|
hc.seq[i]++
|
|
if hc.seq[i] != 0 {
|
|
break
|
|
}
|
|
if i == 0 {
|
|
panic("TLS: epoch number wraparound")
|
|
}
|
|
}
|
|
limit = 2
|
|
}
|
|
seq := hc.seq[limit:]
|
|
for i := range seq {
|
|
seq[i] = 0
|
|
}
|
|
}
|
|
|
|
func (hc *halfConn) recordHeaderLen() int {
|
|
if hc.isDTLS {
|
|
return dtlsRecordHeaderLen
|
|
}
|
|
return tlsRecordHeaderLen
|
|
}
|
|
|
|
// removePadding returns an unpadded slice, in constant time, which is a prefix
|
|
// of the input. It also returns a byte which is equal to 255 if the padding
|
|
// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
|
|
func removePadding(payload []byte) ([]byte, byte) {
|
|
if len(payload) < 1 {
|
|
return payload, 0
|
|
}
|
|
|
|
paddingLen := payload[len(payload)-1]
|
|
t := uint(len(payload)-1) - uint(paddingLen)
|
|
// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
|
|
good := byte(int32(^t) >> 31)
|
|
|
|
toCheck := 255 // the maximum possible padding length
|
|
// The length of the padded data is public, so we can use an if here
|
|
if toCheck+1 > len(payload) {
|
|
toCheck = len(payload) - 1
|
|
}
|
|
|
|
for i := 0; i < toCheck; i++ {
|
|
t := uint(paddingLen) - uint(i)
|
|
// if i <= paddingLen then the MSB of t is zero
|
|
mask := byte(int32(^t) >> 31)
|
|
b := payload[len(payload)-1-i]
|
|
good &^= mask&paddingLen ^ mask&b
|
|
}
|
|
|
|
// We AND together the bits of good and replicate the result across
|
|
// all the bits.
|
|
good &= good << 4
|
|
good &= good << 2
|
|
good &= good << 1
|
|
good = uint8(int8(good) >> 7)
|
|
|
|
toRemove := good&paddingLen + 1
|
|
return payload[:len(payload)-int(toRemove)], good
|
|
}
|
|
|
|
// removePaddingSSL30 is a replacement for removePadding in the case that the
|
|
// protocol version is SSLv3. In this version, the contents of the padding
|
|
// are random and cannot be checked.
|
|
func removePaddingSSL30(payload []byte) ([]byte, byte) {
|
|
if len(payload) < 1 {
|
|
return payload, 0
|
|
}
|
|
|
|
paddingLen := int(payload[len(payload)-1]) + 1
|
|
if paddingLen > len(payload) {
|
|
return payload, 0
|
|
}
|
|
|
|
return payload[:len(payload)-paddingLen], 255
|
|
}
|
|
|
|
func roundUp(a, b int) int {
|
|
return a + (b-a%b)%b
|
|
}
|
|
|
|
// cbcMode is an interface for block ciphers using cipher block chaining.
|
|
type cbcMode interface {
|
|
cipher.BlockMode
|
|
SetIV([]byte)
|
|
}
|
|
|
|
// decrypt checks and strips the mac and decrypts the data in b. Returns a
|
|
// success boolean, the number of bytes to skip from the start of the record in
|
|
// order to get the application payload, and an optional alert value.
|
|
func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
|
|
recordHeaderLen := hc.recordHeaderLen()
|
|
|
|
// pull out payload
|
|
payload := b.data[recordHeaderLen:]
|
|
|
|
macSize := 0
|
|
if hc.mac != nil {
|
|
macSize = hc.mac.Size()
|
|
}
|
|
|
|
paddingGood := byte(255)
|
|
explicitIVLen := 0
|
|
|
|
seq := hc.seq[:]
|
|
if hc.isDTLS {
|
|
// DTLS sequence numbers are explicit.
|
|
seq = b.data[3:11]
|
|
}
|
|
|
|
// decrypt
|
|
if hc.cipher != nil {
|
|
switch c := hc.cipher.(type) {
|
|
case cipher.Stream:
|
|
c.XORKeyStream(payload, payload)
|
|
case cipher.AEAD:
|
|
explicitIVLen = 8
|
|
if len(payload) < explicitIVLen {
|
|
return false, 0, alertBadRecordMAC
|
|
}
|
|
nonce := payload[:8]
|
|
payload = payload[8:]
|
|
|
|
var additionalData [13]byte
|
|
copy(additionalData[:], seq)
|
|
copy(additionalData[8:], b.data[:3])
|
|
n := len(payload) - c.Overhead()
|
|
additionalData[11] = byte(n >> 8)
|
|
additionalData[12] = byte(n)
|
|
var err error
|
|
payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
|
|
if err != nil {
|
|
return false, 0, alertBadRecordMAC
|
|
}
|
|
b.resize(recordHeaderLen + explicitIVLen + len(payload))
|
|
case cbcMode:
|
|
blockSize := c.BlockSize()
|
|
if hc.version >= VersionTLS11 || hc.isDTLS {
|
|
explicitIVLen = blockSize
|
|
}
|
|
|
|
if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
|
|
return false, 0, alertBadRecordMAC
|
|
}
|
|
|
|
if explicitIVLen > 0 {
|
|
c.SetIV(payload[:explicitIVLen])
|
|
payload = payload[explicitIVLen:]
|
|
}
|
|
c.CryptBlocks(payload, payload)
|
|
if hc.version == VersionSSL30 {
|
|
payload, paddingGood = removePaddingSSL30(payload)
|
|
} else {
|
|
payload, paddingGood = removePadding(payload)
|
|
}
|
|
b.resize(recordHeaderLen + explicitIVLen + len(payload))
|
|
|
|
// note that we still have a timing side-channel in the
|
|
// MAC check, below. An attacker can align the record
|
|
// so that a correct padding will cause one less hash
|
|
// block to be calculated. Then they can iteratively
|
|
// decrypt a record by breaking each byte. See
|
|
// "Password Interception in a SSL/TLS Channel", Brice
|
|
// Canvel et al.
|
|
//
|
|
// However, our behavior matches OpenSSL, so we leak
|
|
// only as much as they do.
|
|
default:
|
|
panic("unknown cipher type")
|
|
}
|
|
}
|
|
|
|
// check, strip mac
|
|
if hc.mac != nil {
|
|
if len(payload) < macSize {
|
|
return false, 0, alertBadRecordMAC
|
|
}
|
|
|
|
// strip mac off payload, b.data
|
|
n := len(payload) - macSize
|
|
b.data[recordHeaderLen-2] = byte(n >> 8)
|
|
b.data[recordHeaderLen-1] = byte(n)
|
|
b.resize(recordHeaderLen + explicitIVLen + n)
|
|
remoteMAC := payload[n:]
|
|
localMAC := hc.mac.MAC(hc.inDigestBuf, seq, b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], payload[:n])
|
|
|
|
if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
|
|
return false, 0, alertBadRecordMAC
|
|
}
|
|
hc.inDigestBuf = localMAC
|
|
}
|
|
hc.incSeq(false)
|
|
|
|
return true, recordHeaderLen + explicitIVLen, 0
|
|
}
|
|
|
|
// padToBlockSize calculates the needed padding block, if any, for a payload.
|
|
// On exit, prefix aliases payload and extends to the end of the last full
|
|
// block of payload. finalBlock is a fresh slice which contains the contents of
|
|
// any suffix of payload as well as the needed padding to make finalBlock a
|
|
// full block.
|
|
func padToBlockSize(payload []byte, blockSize int, config *Config) (prefix, finalBlock []byte) {
|
|
overrun := len(payload) % blockSize
|
|
prefix = payload[:len(payload)-overrun]
|
|
|
|
paddingLen := blockSize - overrun
|
|
finalSize := blockSize
|
|
if config.Bugs.MaxPadding {
|
|
for paddingLen+blockSize <= 256 {
|
|
paddingLen += blockSize
|
|
}
|
|
finalSize = 256
|
|
}
|
|
finalBlock = make([]byte, finalSize)
|
|
for i := range finalBlock {
|
|
finalBlock[i] = byte(paddingLen - 1)
|
|
}
|
|
if config.Bugs.PaddingFirstByteBad || config.Bugs.PaddingFirstByteBadIf255 && paddingLen == 256 {
|
|
finalBlock[overrun] ^= 0xff
|
|
}
|
|
copy(finalBlock, payload[len(payload)-overrun:])
|
|
return
|
|
}
|
|
|
|
// encrypt encrypts and macs the data in b.
|
|
func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
|
|
recordHeaderLen := hc.recordHeaderLen()
|
|
|
|
// mac
|
|
if hc.mac != nil {
|
|
mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
|
|
|
|
n := len(b.data)
|
|
b.resize(n + len(mac))
|
|
copy(b.data[n:], mac)
|
|
hc.outDigestBuf = mac
|
|
}
|
|
|
|
payload := b.data[recordHeaderLen:]
|
|
|
|
// encrypt
|
|
if hc.cipher != nil {
|
|
switch c := hc.cipher.(type) {
|
|
case cipher.Stream:
|
|
c.XORKeyStream(payload, payload)
|
|
case cipher.AEAD:
|
|
payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
|
|
b.resize(len(b.data) + c.Overhead())
|
|
nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
|
|
payload := b.data[recordHeaderLen+explicitIVLen:]
|
|
payload = payload[:payloadLen]
|
|
|
|
var additionalData [13]byte
|
|
copy(additionalData[:], hc.seq[:])
|
|
copy(additionalData[8:], b.data[:3])
|
|
additionalData[11] = byte(payloadLen >> 8)
|
|
additionalData[12] = byte(payloadLen)
|
|
|
|
c.Seal(payload[:0], nonce, payload, additionalData[:])
|
|
case cbcMode:
|
|
blockSize := c.BlockSize()
|
|
if explicitIVLen > 0 {
|
|
c.SetIV(payload[:explicitIVLen])
|
|
payload = payload[explicitIVLen:]
|
|
}
|
|
prefix, finalBlock := padToBlockSize(payload, blockSize, hc.config)
|
|
b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
|
|
c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
|
|
c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
|
|
default:
|
|
panic("unknown cipher type")
|
|
}
|
|
}
|
|
|
|
// update length to include MAC and any block padding needed.
|
|
n := len(b.data) - recordHeaderLen
|
|
b.data[recordHeaderLen-2] = byte(n >> 8)
|
|
b.data[recordHeaderLen-1] = byte(n)
|
|
hc.incSeq(true)
|
|
|
|
return true, 0
|
|
}
|
|
|
|
// A block is a simple data buffer.
|
|
type block struct {
|
|
data []byte
|
|
off int // index for Read
|
|
link *block
|
|
}
|
|
|
|
// resize resizes block to be n bytes, growing if necessary.
|
|
func (b *block) resize(n int) {
|
|
if n > cap(b.data) {
|
|
b.reserve(n)
|
|
}
|
|
b.data = b.data[0:n]
|
|
}
|
|
|
|
// reserve makes sure that block contains a capacity of at least n bytes.
|
|
func (b *block) reserve(n int) {
|
|
if cap(b.data) >= n {
|
|
return
|
|
}
|
|
m := cap(b.data)
|
|
if m == 0 {
|
|
m = 1024
|
|
}
|
|
for m < n {
|
|
m *= 2
|
|
}
|
|
data := make([]byte, len(b.data), m)
|
|
copy(data, b.data)
|
|
b.data = data
|
|
}
|
|
|
|
// readFromUntil reads from r into b until b contains at least n bytes
|
|
// or else returns an error.
|
|
func (b *block) readFromUntil(r io.Reader, n int) error {
|
|
// quick case
|
|
if len(b.data) >= n {
|
|
return nil
|
|
}
|
|
|
|
// read until have enough.
|
|
b.reserve(n)
|
|
for {
|
|
m, err := r.Read(b.data[len(b.data):cap(b.data)])
|
|
b.data = b.data[0 : len(b.data)+m]
|
|
if len(b.data) >= n {
|
|
// TODO(bradfitz,agl): slightly suspicious
|
|
// that we're throwing away r.Read's err here.
|
|
break
|
|
}
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (b *block) Read(p []byte) (n int, err error) {
|
|
n = copy(p, b.data[b.off:])
|
|
b.off += n
|
|
return
|
|
}
|
|
|
|
// newBlock allocates a new block, from hc's free list if possible.
|
|
func (hc *halfConn) newBlock() *block {
|
|
b := hc.bfree
|
|
if b == nil {
|
|
return new(block)
|
|
}
|
|
hc.bfree = b.link
|
|
b.link = nil
|
|
b.resize(0)
|
|
return b
|
|
}
|
|
|
|
// freeBlock returns a block to hc's free list.
|
|
// The protocol is such that each side only has a block or two on
|
|
// its free list at a time, so there's no need to worry about
|
|
// trimming the list, etc.
|
|
func (hc *halfConn) freeBlock(b *block) {
|
|
b.link = hc.bfree
|
|
hc.bfree = b
|
|
}
|
|
|
|
// splitBlock splits a block after the first n bytes,
|
|
// returning a block with those n bytes and a
|
|
// block with the remainder. the latter may be nil.
|
|
func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
|
|
if len(b.data) <= n {
|
|
return b, nil
|
|
}
|
|
bb := hc.newBlock()
|
|
bb.resize(len(b.data) - n)
|
|
copy(bb.data, b.data[n:])
|
|
b.data = b.data[0:n]
|
|
return b, bb
|
|
}
|
|
|
|
func (c *Conn) doReadRecord(want recordType) (recordType, *block, error) {
|
|
if c.isDTLS {
|
|
return c.dtlsDoReadRecord(want)
|
|
}
|
|
|
|
recordHeaderLen := tlsRecordHeaderLen
|
|
|
|
if c.rawInput == nil {
|
|
c.rawInput = c.in.newBlock()
|
|
}
|
|
b := c.rawInput
|
|
|
|
// Read header, payload.
|
|
if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
|
|
// RFC suggests that EOF without an alertCloseNotify is
|
|
// an error, but popular web sites seem to do this,
|
|
// so we can't make it an error.
|
|
// if err == io.EOF {
|
|
// err = io.ErrUnexpectedEOF
|
|
// }
|
|
if e, ok := err.(net.Error); !ok || !e.Temporary() {
|
|
c.in.setErrorLocked(err)
|
|
}
|
|
return 0, nil, err
|
|
}
|
|
typ := recordType(b.data[0])
|
|
|
|
// No valid TLS record has a type of 0x80, however SSLv2 handshakes
|
|
// start with a uint16 length where the MSB is set and the first record
|
|
// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
|
|
// an SSLv2 client.
|
|
if want == recordTypeHandshake && typ == 0x80 {
|
|
c.sendAlert(alertProtocolVersion)
|
|
return 0, nil, c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
|
|
}
|
|
|
|
vers := uint16(b.data[1])<<8 | uint16(b.data[2])
|
|
n := int(b.data[3])<<8 | int(b.data[4])
|
|
if c.haveVers {
|
|
if vers != c.vers {
|
|
c.sendAlert(alertProtocolVersion)
|
|
return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
|
|
}
|
|
} else {
|
|
if expect := c.config.Bugs.ExpectInitialRecordVersion; expect != 0 && vers != expect {
|
|
c.sendAlert(alertProtocolVersion)
|
|
return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, expect))
|
|
}
|
|
}
|
|
if n > maxCiphertext {
|
|
c.sendAlert(alertRecordOverflow)
|
|
return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
|
|
}
|
|
if !c.haveVers {
|
|
// First message, be extra suspicious:
|
|
// this might not be a TLS client.
|
|
// Bail out before reading a full 'body', if possible.
|
|
// The current max version is 3.1.
|
|
// If the version is >= 16.0, it's probably not real.
|
|
// Similarly, a clientHello message encodes in
|
|
// well under a kilobyte. If the length is >= 12 kB,
|
|
// it's probably not real.
|
|
if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
|
|
c.sendAlert(alertUnexpectedMessage)
|
|
return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
|
|
}
|
|
}
|
|
if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
|
|
if err == io.EOF {
|
|
err = io.ErrUnexpectedEOF
|
|
}
|
|
if e, ok := err.(net.Error); !ok || !e.Temporary() {
|
|
c.in.setErrorLocked(err)
|
|
}
|
|
return 0, nil, err
|
|
}
|
|
|
|
// Process message.
|
|
b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
|
|
ok, off, err := c.in.decrypt(b)
|
|
if !ok {
|
|
c.in.setErrorLocked(c.sendAlert(err))
|
|
}
|
|
b.off = off
|
|
return typ, b, nil
|
|
}
|
|
|
|
// readRecord reads the next TLS record from the connection
|
|
// and updates the record layer state.
|
|
// c.in.Mutex <= L; c.input == nil.
|
|
func (c *Conn) readRecord(want recordType) error {
|
|
// Caller must be in sync with connection:
|
|
// handshake data if handshake not yet completed,
|
|
// else application data.
|
|
switch want {
|
|
default:
|
|
c.sendAlert(alertInternalError)
|
|
return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
|
|
case recordTypeHandshake, recordTypeChangeCipherSpec:
|
|
if c.handshakeComplete {
|
|
c.sendAlert(alertInternalError)
|
|
return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
|
|
}
|
|
case recordTypeApplicationData:
|
|
if !c.handshakeComplete && !c.config.Bugs.ExpectFalseStart {
|
|
c.sendAlert(alertInternalError)
|
|
return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
|
|
}
|
|
}
|
|
|
|
Again:
|
|
typ, b, err := c.doReadRecord(want)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
data := b.data[b.off:]
|
|
if len(data) > maxPlaintext {
|
|
err := c.sendAlert(alertRecordOverflow)
|
|
c.in.freeBlock(b)
|
|
return c.in.setErrorLocked(err)
|
|
}
|
|
|
|
switch typ {
|
|
default:
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
|
|
|
case recordTypeAlert:
|
|
if len(data) != 2 {
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
|
break
|
|
}
|
|
if alert(data[1]) == alertCloseNotify {
|
|
c.in.setErrorLocked(io.EOF)
|
|
break
|
|
}
|
|
switch data[0] {
|
|
case alertLevelWarning:
|
|
// drop on the floor
|
|
c.in.freeBlock(b)
|
|
goto Again
|
|
case alertLevelError:
|
|
c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
|
|
default:
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
|
}
|
|
|
|
case recordTypeChangeCipherSpec:
|
|
if typ != want || len(data) != 1 || data[0] != 1 {
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
|
break
|
|
}
|
|
err := c.in.changeCipherSpec(c.config)
|
|
if err != nil {
|
|
c.in.setErrorLocked(c.sendAlert(err.(alert)))
|
|
}
|
|
|
|
case recordTypeApplicationData:
|
|
if typ != want {
|
|
c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
|
break
|
|
}
|
|
c.input = b
|
|
b = nil
|
|
|
|
case recordTypeHandshake:
|
|
// TODO(rsc): Should at least pick off connection close.
|
|
if typ != want {
|
|
// A client might need to process a HelloRequest from
|
|
// the server, thus receiving a handshake message when
|
|
// application data is expected is ok. Moreover, a DTLS
|
|
// peer who sends Finished second may retransmit the
|
|
// final leg. BoringSSL retrainsmits on an internal
|
|
// timer, so this may also occur in test code.
|
|
if !c.isClient && !c.isDTLS {
|
|
return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
|
|
}
|
|
}
|
|
c.hand.Write(data)
|
|
}
|
|
|
|
if b != nil {
|
|
c.in.freeBlock(b)
|
|
}
|
|
return c.in.err
|
|
}
|
|
|
|
// sendAlert sends a TLS alert message.
|
|
// c.out.Mutex <= L.
|
|
func (c *Conn) sendAlertLocked(err alert) error {
|
|
switch err {
|
|
case alertNoRenegotiation, alertCloseNotify:
|
|
c.tmp[0] = alertLevelWarning
|
|
default:
|
|
c.tmp[0] = alertLevelError
|
|
}
|
|
c.tmp[1] = byte(err)
|
|
if c.config.Bugs.FragmentAlert {
|
|
c.writeRecord(recordTypeAlert, c.tmp[0:1])
|
|
c.writeRecord(recordTypeAlert, c.tmp[1:2])
|
|
} else {
|
|
c.writeRecord(recordTypeAlert, c.tmp[0:2])
|
|
}
|
|
// closeNotify is a special case in that it isn't an error:
|
|
if err != alertCloseNotify {
|
|
return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// sendAlert sends a TLS alert message.
|
|
// L < c.out.Mutex.
|
|
func (c *Conn) sendAlert(err alert) error {
|
|
c.out.Lock()
|
|
defer c.out.Unlock()
|
|
return c.sendAlertLocked(err)
|
|
}
|
|
|
|
// writeV2Record writes a record for a V2ClientHello.
|
|
func (c *Conn) writeV2Record(data []byte) (n int, err error) {
|
|
record := make([]byte, 2+len(data))
|
|
record[0] = uint8(len(data)>>8) | 0x80
|
|
record[1] = uint8(len(data))
|
|
copy(record[2:], data)
|
|
return c.conn.Write(record)
|
|
}
|
|
|
|
// writeRecord writes a TLS record with the given type and payload
|
|
// to the connection and updates the record layer state.
|
|
// c.out.Mutex <= L.
|
|
func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
|
|
if c.isDTLS {
|
|
return c.dtlsWriteRecord(typ, data)
|
|
}
|
|
|
|
recordHeaderLen := tlsRecordHeaderLen
|
|
b := c.out.newBlock()
|
|
first := true
|
|
isClientHello := typ == recordTypeHandshake && len(data) > 0 && data[0] == typeClientHello
|
|
for len(data) > 0 {
|
|
m := len(data)
|
|
if m > maxPlaintext {
|
|
m = maxPlaintext
|
|
}
|
|
if typ == recordTypeHandshake && c.config.Bugs.MaxHandshakeRecordLength > 0 && m > c.config.Bugs.MaxHandshakeRecordLength {
|
|
m = c.config.Bugs.MaxHandshakeRecordLength
|
|
// By default, do not fragment the client_version or
|
|
// server_version, which are located in the first 6
|
|
// bytes.
|
|
if first && isClientHello && !c.config.Bugs.FragmentClientVersion && m < 6 {
|
|
m = 6
|
|
}
|
|
}
|
|
explicitIVLen := 0
|
|
explicitIVIsSeq := false
|
|
first = false
|
|
|
|
var cbc cbcMode
|
|
if c.out.version >= VersionTLS11 {
|
|
var ok bool
|
|
if cbc, ok = c.out.cipher.(cbcMode); ok {
|
|
explicitIVLen = cbc.BlockSize()
|
|
}
|
|
}
|
|
if explicitIVLen == 0 {
|
|
if _, ok := c.out.cipher.(cipher.AEAD); ok {
|
|
explicitIVLen = 8
|
|
// The AES-GCM construction in TLS has an
|
|
// explicit nonce so that the nonce can be
|
|
// random. However, the nonce is only 8 bytes
|
|
// which is too small for a secure, random
|
|
// nonce. Therefore we use the sequence number
|
|
// as the nonce.
|
|
explicitIVIsSeq = true
|
|
}
|
|
}
|
|
b.resize(recordHeaderLen + explicitIVLen + m)
|
|
b.data[0] = byte(typ)
|
|
vers := c.vers
|
|
if vers == 0 {
|
|
// Some TLS servers fail if the record version is
|
|
// greater than TLS 1.0 for the initial ClientHello.
|
|
vers = VersionTLS10
|
|
}
|
|
b.data[1] = byte(vers >> 8)
|
|
b.data[2] = byte(vers)
|
|
b.data[3] = byte(m >> 8)
|
|
b.data[4] = byte(m)
|
|
if explicitIVLen > 0 {
|
|
explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
|
|
if explicitIVIsSeq {
|
|
copy(explicitIV, c.out.seq[:])
|
|
} else {
|
|
if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
copy(b.data[recordHeaderLen+explicitIVLen:], data)
|
|
c.out.encrypt(b, explicitIVLen)
|
|
_, err = c.conn.Write(b.data)
|
|
if err != nil {
|
|
break
|
|
}
|
|
n += m
|
|
data = data[m:]
|
|
}
|
|
c.out.freeBlock(b)
|
|
|
|
if typ == recordTypeChangeCipherSpec {
|
|
err = c.out.changeCipherSpec(c.config)
|
|
if err != nil {
|
|
// Cannot call sendAlert directly,
|
|
// because we already hold c.out.Mutex.
|
|
c.tmp[0] = alertLevelError
|
|
c.tmp[1] = byte(err.(alert))
|
|
c.writeRecord(recordTypeAlert, c.tmp[0:2])
|
|
return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func (c *Conn) doReadHandshake() ([]byte, error) {
|
|
if c.isDTLS {
|
|
return c.dtlsDoReadHandshake()
|
|
}
|
|
|
|
for c.hand.Len() < 4 {
|
|
if err := c.in.err; err != nil {
|
|
return nil, err
|
|
}
|
|
if err := c.readRecord(recordTypeHandshake); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
data := c.hand.Bytes()
|
|
n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
|
|
if n > maxHandshake {
|
|
return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
|
|
}
|
|
for c.hand.Len() < 4+n {
|
|
if err := c.in.err; err != nil {
|
|
return nil, err
|
|
}
|
|
if err := c.readRecord(recordTypeHandshake); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
return c.hand.Next(4 + n), nil
|
|
}
|
|
|
|
// readHandshake reads the next handshake message from
|
|
// the record layer.
|
|
// c.in.Mutex < L; c.out.Mutex < L.
|
|
func (c *Conn) readHandshake() (interface{}, error) {
|
|
data, err := c.doReadHandshake()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var m handshakeMessage
|
|
switch data[0] {
|
|
case typeHelloRequest:
|
|
m = new(helloRequestMsg)
|
|
case typeClientHello:
|
|
m = &clientHelloMsg{
|
|
isDTLS: c.isDTLS,
|
|
}
|
|
case typeServerHello:
|
|
m = &serverHelloMsg{
|
|
isDTLS: c.isDTLS,
|
|
}
|
|
case typeNewSessionTicket:
|
|
m = new(newSessionTicketMsg)
|
|
case typeCertificate:
|
|
m = new(certificateMsg)
|
|
case typeCertificateRequest:
|
|
m = &certificateRequestMsg{
|
|
hasSignatureAndHash: c.vers >= VersionTLS12,
|
|
}
|
|
case typeCertificateStatus:
|
|
m = new(certificateStatusMsg)
|
|
case typeServerKeyExchange:
|
|
m = new(serverKeyExchangeMsg)
|
|
case typeServerHelloDone:
|
|
m = new(serverHelloDoneMsg)
|
|
case typeClientKeyExchange:
|
|
m = new(clientKeyExchangeMsg)
|
|
case typeCertificateVerify:
|
|
m = &certificateVerifyMsg{
|
|
hasSignatureAndHash: c.vers >= VersionTLS12,
|
|
}
|
|
case typeNextProtocol:
|
|
m = new(nextProtoMsg)
|
|
case typeFinished:
|
|
m = new(finishedMsg)
|
|
case typeHelloVerifyRequest:
|
|
m = new(helloVerifyRequestMsg)
|
|
case typeEncryptedExtensions:
|
|
m = new(encryptedExtensionsMsg)
|
|
default:
|
|
return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
|
}
|
|
|
|
// The handshake message unmarshallers
|
|
// expect to be able to keep references to data,
|
|
// so pass in a fresh copy that won't be overwritten.
|
|
data = append([]byte(nil), data...)
|
|
|
|
if !m.unmarshal(data) {
|
|
return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
|
|
}
|
|
return m, nil
|
|
}
|
|
|
|
// Write writes data to the connection.
|
|
func (c *Conn) Write(b []byte) (int, error) {
|
|
if err := c.Handshake(); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
c.out.Lock()
|
|
defer c.out.Unlock()
|
|
|
|
if err := c.out.err; err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
if !c.handshakeComplete {
|
|
return 0, alertInternalError
|
|
}
|
|
|
|
if c.config.Bugs.SendSpuriousAlert {
|
|
c.sendAlertLocked(alertRecordOverflow)
|
|
}
|
|
|
|
// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
|
|
// attack when using block mode ciphers due to predictable IVs.
|
|
// This can be prevented by splitting each Application Data
|
|
// record into two records, effectively randomizing the IV.
|
|
//
|
|
// http://www.openssl.org/~bodo/tls-cbc.txt
|
|
// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
|
|
// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
|
|
|
|
var m int
|
|
if len(b) > 1 && c.vers <= VersionTLS10 && !c.isDTLS {
|
|
if _, ok := c.out.cipher.(cipher.BlockMode); ok {
|
|
n, err := c.writeRecord(recordTypeApplicationData, b[:1])
|
|
if err != nil {
|
|
return n, c.out.setErrorLocked(err)
|
|
}
|
|
m, b = 1, b[1:]
|
|
}
|
|
}
|
|
|
|
n, err := c.writeRecord(recordTypeApplicationData, b)
|
|
return n + m, c.out.setErrorLocked(err)
|
|
}
|
|
|
|
func (c *Conn) handleRenegotiation() error {
|
|
c.handshakeComplete = false
|
|
if !c.isClient {
|
|
panic("renegotiation should only happen for a client")
|
|
}
|
|
|
|
msg, err := c.readHandshake()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, ok := msg.(*helloRequestMsg)
|
|
if !ok {
|
|
c.sendAlert(alertUnexpectedMessage)
|
|
return alertUnexpectedMessage
|
|
}
|
|
|
|
return c.Handshake()
|
|
}
|
|
|
|
func (c *Conn) Renegotiate() error {
|
|
if !c.isClient {
|
|
helloReq := new(helloRequestMsg)
|
|
c.writeRecord(recordTypeHandshake, helloReq.marshal())
|
|
}
|
|
|
|
c.handshakeComplete = false
|
|
return c.Handshake()
|
|
}
|
|
|
|
// Read can be made to time out and return a net.Error with Timeout() == true
|
|
// after a fixed time limit; see SetDeadline and SetReadDeadline.
|
|
func (c *Conn) Read(b []byte) (n int, err error) {
|
|
if err = c.Handshake(); err != nil {
|
|
return
|
|
}
|
|
|
|
c.in.Lock()
|
|
defer c.in.Unlock()
|
|
|
|
// Some OpenSSL servers send empty records in order to randomize the
|
|
// CBC IV. So this loop ignores a limited number of empty records.
|
|
const maxConsecutiveEmptyRecords = 100
|
|
for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
|
|
for c.input == nil && c.in.err == nil {
|
|
if err := c.readRecord(recordTypeApplicationData); err != nil {
|
|
// Soft error, like EAGAIN
|
|
return 0, err
|
|
}
|
|
if c.hand.Len() > 0 && !c.isDTLS {
|
|
// We received handshake bytes, indicating the
|
|
// start of a renegotiation or a DTLS retransmit.
|
|
if err := c.handleRenegotiation(); err != nil {
|
|
return 0, err
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
if err := c.in.err; err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
n, err = c.input.Read(b)
|
|
if c.input.off >= len(c.input.data) || c.isDTLS {
|
|
c.in.freeBlock(c.input)
|
|
c.input = nil
|
|
}
|
|
|
|
// If a close-notify alert is waiting, read it so that
|
|
// we can return (n, EOF) instead of (n, nil), to signal
|
|
// to the HTTP response reading goroutine that the
|
|
// connection is now closed. This eliminates a race
|
|
// where the HTTP response reading goroutine would
|
|
// otherwise not observe the EOF until its next read,
|
|
// by which time a client goroutine might have already
|
|
// tried to reuse the HTTP connection for a new
|
|
// request.
|
|
// See https://codereview.appspot.com/76400046
|
|
// and http://golang.org/issue/3514
|
|
if ri := c.rawInput; ri != nil &&
|
|
n != 0 && err == nil &&
|
|
c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
|
|
if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
|
|
err = recErr // will be io.EOF on closeNotify
|
|
}
|
|
}
|
|
|
|
if n != 0 || err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
|
|
return 0, io.ErrNoProgress
|
|
}
|
|
|
|
// Close closes the connection.
|
|
func (c *Conn) Close() error {
|
|
var alertErr error
|
|
|
|
c.handshakeMutex.Lock()
|
|
defer c.handshakeMutex.Unlock()
|
|
if c.handshakeComplete {
|
|
alertErr = c.sendAlert(alertCloseNotify)
|
|
}
|
|
|
|
if err := c.conn.Close(); err != nil {
|
|
return err
|
|
}
|
|
return alertErr
|
|
}
|
|
|
|
// Handshake runs the client or server handshake
|
|
// protocol if it has not yet been run.
|
|
// Most uses of this package need not call Handshake
|
|
// explicitly: the first Read or Write will call it automatically.
|
|
func (c *Conn) Handshake() error {
|
|
c.handshakeMutex.Lock()
|
|
defer c.handshakeMutex.Unlock()
|
|
if err := c.handshakeErr; err != nil {
|
|
return err
|
|
}
|
|
if c.handshakeComplete {
|
|
return nil
|
|
}
|
|
|
|
if c.isClient {
|
|
c.handshakeErr = c.clientHandshake()
|
|
} else {
|
|
c.handshakeErr = c.serverHandshake()
|
|
}
|
|
return c.handshakeErr
|
|
}
|
|
|
|
// ConnectionState returns basic TLS details about the connection.
|
|
func (c *Conn) ConnectionState() ConnectionState {
|
|
c.handshakeMutex.Lock()
|
|
defer c.handshakeMutex.Unlock()
|
|
|
|
var state ConnectionState
|
|
state.HandshakeComplete = c.handshakeComplete
|
|
if c.handshakeComplete {
|
|
state.Version = c.vers
|
|
state.NegotiatedProtocol = c.clientProtocol
|
|
state.DidResume = c.didResume
|
|
state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
|
|
state.NegotiatedProtocolFromALPN = c.usedALPN
|
|
state.CipherSuite = c.cipherSuite
|
|
state.PeerCertificates = c.peerCertificates
|
|
state.VerifiedChains = c.verifiedChains
|
|
state.ServerName = c.serverName
|
|
state.ChannelID = c.channelID
|
|
state.SRTPProtectionProfile = c.srtpProtectionProfile
|
|
}
|
|
|
|
return state
|
|
}
|
|
|
|
// OCSPResponse returns the stapled OCSP response from the TLS server, if
|
|
// any. (Only valid for client connections.)
|
|
func (c *Conn) OCSPResponse() []byte {
|
|
c.handshakeMutex.Lock()
|
|
defer c.handshakeMutex.Unlock()
|
|
|
|
return c.ocspResponse
|
|
}
|
|
|
|
// VerifyHostname checks that the peer certificate chain is valid for
|
|
// connecting to host. If so, it returns nil; if not, it returns an error
|
|
// describing the problem.
|
|
func (c *Conn) VerifyHostname(host string) error {
|
|
c.handshakeMutex.Lock()
|
|
defer c.handshakeMutex.Unlock()
|
|
if !c.isClient {
|
|
return errors.New("tls: VerifyHostname called on TLS server connection")
|
|
}
|
|
if !c.handshakeComplete {
|
|
return errors.New("tls: handshake has not yet been performed")
|
|
}
|
|
return c.peerCertificates[0].VerifyHostname(host)
|
|
}
|