boringssl/crypto/modes/cbc.c
David Benjamin 17cf2cb1d2 Work around language and compiler bug in memcpy, etc.
Most C standard library functions are undefined if passed NULL, even
when the corresponding length is zero. This gives them (and, in turn,
all functions which call them) surprising behavior on empty arrays.
Some compilers will miscompile code due to this rule. See also
https://www.imperialviolet.org/2016/06/26/nonnull.html

Add OPENSSL_memcpy, etc., wrappers which avoid this problem.

BUG=23

Change-Id: I95f42b23e92945af0e681264fffaf578e7f8465e
Reviewed-on: https://boringssl-review.googlesource.com/12928
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2016-12-21 20:34:47 +00:00

213 lines
6.5 KiB
C

/* ====================================================================
* Copyright (c) 2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
#include <assert.h>
#include <string.h>
#include "internal.h"
void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const void *key, uint8_t ivec[16],
block128_f block) {
size_t n;
const uint8_t *iv = ivec;
assert(key != NULL && ivec != NULL);
assert(len == 0 || (in != NULL && out != NULL));
if (STRICT_ALIGNMENT &&
((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) {
while (len >= 16) {
for (n = 0; n < 16; ++n) {
out[n] = in[n] ^ iv[n];
}
(*block)(out, out, key);
iv = out;
len -= 16;
in += 16;
out += 16;
}
} else {
while (len >= 16) {
for (n = 0; n < 16; n += sizeof(size_t)) {
*(size_t *)(out + n) = *(size_t *)(in + n) ^ *(size_t *)(iv + n);
}
(*block)(out, out, key);
iv = out;
len -= 16;
in += 16;
out += 16;
}
}
while (len) {
for (n = 0; n < 16 && n < len; ++n) {
out[n] = in[n] ^ iv[n];
}
for (; n < 16; ++n) {
out[n] = iv[n];
}
(*block)(out, out, key);
iv = out;
if (len <= 16) {
break;
}
len -= 16;
in += 16;
out += 16;
}
OPENSSL_memcpy(ivec, iv, 16);
}
void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const void *key, uint8_t ivec[16],
block128_f block) {
size_t n;
union {
size_t t[16 / sizeof(size_t)];
uint8_t c[16];
} tmp;
assert(key != NULL && ivec != NULL);
assert(len == 0 || (in != NULL && out != NULL));
const uintptr_t inptr = (uintptr_t) in;
const uintptr_t outptr = (uintptr_t) out;
/* If |in| and |out| alias, |in| must be ahead. */
assert(inptr >= outptr || inptr + len <= outptr);
if ((inptr >= 32 && outptr <= inptr - 32) || inptr < outptr) {
/* If |out| is at least two blocks behind |in| or completely disjoint, there
* is no need to decrypt to a temporary block. */
const uint8_t *iv = ivec;
if (STRICT_ALIGNMENT &&
((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) {
while (len >= 16) {
(*block)(in, out, key);
for (n = 0; n < 16; ++n) {
out[n] ^= iv[n];
}
iv = in;
len -= 16;
in += 16;
out += 16;
}
} else if (16 % sizeof(size_t) == 0) { /* always true */
while (len >= 16) {
size_t *out_t = (size_t *)out, *iv_t = (size_t *)iv;
(*block)(in, out, key);
for (n = 0; n < 16 / sizeof(size_t); n++) {
out_t[n] ^= iv_t[n];
}
iv = in;
len -= 16;
in += 16;
out += 16;
}
}
OPENSSL_memcpy(ivec, iv, 16);
} else {
/* |out| is less than two blocks behind |in|. Decrypting an input block
* directly to |out| would overwrite a ciphertext block before it is used as
* the next block's IV. Decrypt to a temporary block instead. */
if (STRICT_ALIGNMENT &&
((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) {
uint8_t c;
while (len >= 16) {
(*block)(in, tmp.c, key);
for (n = 0; n < 16; ++n) {
c = in[n];
out[n] = tmp.c[n] ^ ivec[n];
ivec[n] = c;
}
len -= 16;
in += 16;
out += 16;
}
} else if (16 % sizeof(size_t) == 0) { /* always true */
while (len >= 16) {
size_t c, *out_t = (size_t *)out, *ivec_t = (size_t *)ivec;
const size_t *in_t = (const size_t *)in;
(*block)(in, tmp.c, key);
for (n = 0; n < 16 / sizeof(size_t); n++) {
c = in_t[n];
out_t[n] = tmp.t[n] ^ ivec_t[n];
ivec_t[n] = c;
}
len -= 16;
in += 16;
out += 16;
}
}
}
while (len) {
uint8_t c;
(*block)(in, tmp.c, key);
for (n = 0; n < 16 && n < len; ++n) {
c = in[n];
out[n] = tmp.c[n] ^ ivec[n];
ivec[n] = c;
}
if (len <= 16) {
for (; n < 16; ++n) {
ivec[n] = in[n];
}
break;
}
len -= 16;
in += 16;
out += 16;
}
}