0a211dfe91
BN_FLG_CONSTTIME is a ridiculous API and easy to mess up (CVE-2016-2178). Instead, code that needs a particular algorithm which preserves secrecy of some arguemnt should call into that algorithm directly. This is never set outside the library and is finally unused within the library! Credit for all this goes almost entirely to Brian Smith. I just took care of the last bits. Note there was one BN_FLG_CONSTTIME check that was still reachable, the BN_mod_inverse in RSA key generation. However, it used the same code in both cases for even moduli and φ(n) is even if n is not a power of two. Traditionally, RSA keys are not powers of two, even though it would make the modular reductions a lot easier. When reviewing, check that I didn't remove a BN_FLG_CONSTTIME that led to a BN_mod_exp(_mont) or BN_mod_inverse call (with the exception of the RSA one mentioned above). They should all go to functions for the algorithms themselves like BN_mod_exp_mont_consttime. This CL shows the checks are a no-op for all our tests: https://boringssl-review.googlesource.com/c/12927/ BUG=125 Change-Id: I19cbb375cc75aac202bd76b51ca098841d84f337 Reviewed-on: https://boringssl-review.googlesource.com/12926 Reviewed-by: Adam Langley <alangley@gmail.com>
1655 lines
51 KiB
C++
1655 lines
51 KiB
C++
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the Eric Young open source
|
|
* license provided above.
|
|
*
|
|
* The binary polynomial arithmetic software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
|
* Laboratories. */
|
|
|
|
/* Per C99, various stdint.h and inttypes.h macros (the latter used by bn.h) are
|
|
* unavailable in C++ unless some macros are defined. C++11 overruled this
|
|
* decision, but older Android NDKs still require it. */
|
|
#if !defined(__STDC_CONSTANT_MACROS)
|
|
#define __STDC_CONSTANT_MACROS
|
|
#endif
|
|
#if !defined(__STDC_FORMAT_MACROS)
|
|
#define __STDC_FORMAT_MACROS
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <utility>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "../internal.h"
|
|
#include "../test/file_test.h"
|
|
#include "../test/test_util.h"
|
|
|
|
|
|
static int HexToBIGNUM(bssl::UniquePtr<BIGNUM> *out, const char *in) {
|
|
BIGNUM *raw = NULL;
|
|
int ret = BN_hex2bn(&raw, in);
|
|
out->reset(raw);
|
|
return ret;
|
|
}
|
|
|
|
static bssl::UniquePtr<BIGNUM> GetBIGNUM(FileTest *t, const char *attribute) {
|
|
std::string hex;
|
|
if (!t->GetAttribute(&hex, attribute)) {
|
|
return nullptr;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret;
|
|
if (HexToBIGNUM(&ret, hex.c_str()) != static_cast<int>(hex.size())) {
|
|
t->PrintLine("Could not decode '%s'.", hex.c_str());
|
|
return nullptr;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static bool GetInt(FileTest *t, int *out, const char *attribute) {
|
|
bssl::UniquePtr<BIGNUM> ret = GetBIGNUM(t, attribute);
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
|
|
BN_ULONG word = BN_get_word(ret.get());
|
|
if (word > INT_MAX) {
|
|
return false;
|
|
}
|
|
|
|
*out = static_cast<int>(word);
|
|
return true;
|
|
}
|
|
|
|
static bool ExpectBIGNUMsEqual(FileTest *t, const char *operation,
|
|
const BIGNUM *expected, const BIGNUM *actual) {
|
|
if (BN_cmp(expected, actual) == 0) {
|
|
return true;
|
|
}
|
|
|
|
bssl::UniquePtr<char> expected_str(BN_bn2hex(expected));
|
|
bssl::UniquePtr<char> actual_str(BN_bn2hex(actual));
|
|
if (!expected_str || !actual_str) {
|
|
return false;
|
|
}
|
|
|
|
t->PrintLine("Got %s =", operation);
|
|
t->PrintLine("\t%s", actual_str.get());
|
|
t->PrintLine("wanted:");
|
|
t->PrintLine("\t%s", expected_str.get());
|
|
return false;
|
|
}
|
|
|
|
static bool TestSum(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B");
|
|
bssl::UniquePtr<BIGNUM> sum = GetBIGNUM(t, "Sum");
|
|
if (!a || !b || !sum) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!ret ||
|
|
!BN_add(ret.get(), a.get(), b.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A + B", sum.get(), ret.get()) ||
|
|
!BN_sub(ret.get(), sum.get(), a.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum - A", b.get(), ret.get()) ||
|
|
!BN_sub(ret.get(), sum.get(), b.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum - B", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
// Test that the functions work when |r| and |a| point to the same |BIGNUM|,
|
|
// or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where
|
|
// all of |r|, |a|, and |b| point to the same |BIGNUM|.
|
|
if (!BN_copy(ret.get(), a.get()) ||
|
|
!BN_add(ret.get(), ret.get(), b.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A + B (r is a)", sum.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), b.get()) ||
|
|
!BN_add(ret.get(), a.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A + B (r is b)", sum.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), sum.get()) ||
|
|
!BN_sub(ret.get(), ret.get(), a.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum - A (r is a)", b.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), a.get()) ||
|
|
!BN_sub(ret.get(), sum.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum - A (r is b)", b.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), sum.get()) ||
|
|
!BN_sub(ret.get(), ret.get(), b.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum - B (r is a)", a.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), b.get()) ||
|
|
!BN_sub(ret.get(), sum.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum - B (r is b)", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
// Test |BN_uadd| and |BN_usub| with the prerequisites they are documented as
|
|
// having. Note that these functions are frequently used when the
|
|
// prerequisites don't hold. In those cases, they are supposed to work as if
|
|
// the prerequisite hold, but we don't test that yet. TODO: test that.
|
|
if (!BN_is_negative(a.get()) &&
|
|
!BN_is_negative(b.get()) && BN_cmp(a.get(), b.get()) >= 0) {
|
|
if (!BN_uadd(ret.get(), a.get(), b.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A +u B", sum.get(), ret.get()) ||
|
|
!BN_usub(ret.get(), sum.get(), a.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum -u A", b.get(), ret.get()) ||
|
|
!BN_usub(ret.get(), sum.get(), b.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum -u B", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
// Test that the functions work when |r| and |a| point to the same |BIGNUM|,
|
|
// or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where
|
|
// all of |r|, |a|, and |b| point to the same |BIGNUM|.
|
|
if (!BN_copy(ret.get(), a.get()) ||
|
|
!BN_uadd(ret.get(), ret.get(), b.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A +u B (r is a)", sum.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), b.get()) ||
|
|
!BN_uadd(ret.get(), a.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A +u B (r is b)", sum.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), sum.get()) ||
|
|
!BN_usub(ret.get(), ret.get(), a.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum -u A (r is a)", b.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), a.get()) ||
|
|
!BN_usub(ret.get(), sum.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum -u A (r is b)", b.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), sum.get()) ||
|
|
!BN_usub(ret.get(), ret.get(), b.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum -u B (r is a)", a.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), b.get()) ||
|
|
!BN_usub(ret.get(), sum.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum -u B (r is b)", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Test with |BN_add_word| and |BN_sub_word| if |b| is small enough.
|
|
BN_ULONG b_word = BN_get_word(b.get());
|
|
if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) {
|
|
if (!BN_copy(ret.get(), a.get()) ||
|
|
!BN_add_word(ret.get(), b_word) ||
|
|
!ExpectBIGNUMsEqual(t, "A + B (word)", sum.get(), ret.get()) ||
|
|
!BN_copy(ret.get(), sum.get()) ||
|
|
!BN_sub_word(ret.get(), b_word) ||
|
|
!ExpectBIGNUMsEqual(t, "Sum - B (word)", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestLShift1(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> lshift1 = GetBIGNUM(t, "LShift1");
|
|
bssl::UniquePtr<BIGNUM> zero(BN_new());
|
|
if (!a || !lshift1 || !zero) {
|
|
return false;
|
|
}
|
|
|
|
BN_zero(zero.get());
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new()), two(BN_new()), remainder(BN_new());
|
|
if (!ret || !two || !remainder ||
|
|
!BN_set_word(two.get(), 2) ||
|
|
!BN_add(ret.get(), a.get(), a.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A + A", lshift1.get(), ret.get()) ||
|
|
!BN_mul(ret.get(), a.get(), two.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A * 2", lshift1.get(), ret.get()) ||
|
|
!BN_div(ret.get(), remainder.get(), lshift1.get(), two.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "LShift1 / 2", a.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "LShift1 % 2", zero.get(), remainder.get()) ||
|
|
!BN_lshift1(ret.get(), a.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A << 1", lshift1.get(), ret.get()) ||
|
|
!BN_rshift1(ret.get(), lshift1.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get()) ||
|
|
!BN_rshift1(ret.get(), lshift1.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
// Set the LSB to 1 and test rshift1 again.
|
|
if (!BN_set_bit(lshift1.get(), 0) ||
|
|
!BN_div(ret.get(), nullptr /* rem */, lshift1.get(), two.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "(LShift1 | 1) / 2", a.get(), ret.get()) ||
|
|
!BN_rshift1(ret.get(), lshift1.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "(LShift | 1) >> 1", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestLShift(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> lshift = GetBIGNUM(t, "LShift");
|
|
int n = 0;
|
|
if (!a || !lshift || !GetInt(t, &n, "N")) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!ret ||
|
|
!BN_lshift(ret.get(), a.get(), n) ||
|
|
!ExpectBIGNUMsEqual(t, "A << N", lshift.get(), ret.get()) ||
|
|
!BN_rshift(ret.get(), lshift.get(), n) ||
|
|
!ExpectBIGNUMsEqual(t, "A >> N", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestRShift(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> rshift = GetBIGNUM(t, "RShift");
|
|
int n = 0;
|
|
if (!a || !rshift || !GetInt(t, &n, "N")) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!ret ||
|
|
!BN_rshift(ret.get(), a.get(), n) ||
|
|
!ExpectBIGNUMsEqual(t, "A >> N", rshift.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestSquare(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> square = GetBIGNUM(t, "Square");
|
|
bssl::UniquePtr<BIGNUM> zero(BN_new());
|
|
if (!a || !square || !zero) {
|
|
return false;
|
|
}
|
|
|
|
BN_zero(zero.get());
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new()), remainder(BN_new());
|
|
if (!ret || !remainder ||
|
|
!BN_sqr(ret.get(), a.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A^2", square.get(), ret.get()) ||
|
|
!BN_mul(ret.get(), a.get(), a.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A * A", square.get(), ret.get()) ||
|
|
!BN_div(ret.get(), remainder.get(), square.get(), a.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "Square / A", a.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Square % A", zero.get(), remainder.get())) {
|
|
return false;
|
|
}
|
|
|
|
BN_set_negative(a.get(), 0);
|
|
if (!BN_sqrt(ret.get(), square.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "sqrt(Square)", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
// BN_sqrt should fail on non-squares and negative numbers.
|
|
if (!BN_is_zero(square.get())) {
|
|
bssl::UniquePtr<BIGNUM> tmp(BN_new());
|
|
if (!tmp || !BN_copy(tmp.get(), square.get())) {
|
|
return false;
|
|
}
|
|
BN_set_negative(tmp.get(), 1);
|
|
|
|
if (BN_sqrt(ret.get(), tmp.get(), ctx)) {
|
|
t->PrintLine("BN_sqrt succeeded on a negative number");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
BN_set_negative(tmp.get(), 0);
|
|
if (!BN_add(tmp.get(), tmp.get(), BN_value_one())) {
|
|
return false;
|
|
}
|
|
if (BN_sqrt(ret.get(), tmp.get(), ctx)) {
|
|
t->PrintLine("BN_sqrt succeeded on a non-square");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestProduct(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B");
|
|
bssl::UniquePtr<BIGNUM> product = GetBIGNUM(t, "Product");
|
|
bssl::UniquePtr<BIGNUM> zero(BN_new());
|
|
if (!a || !b || !product || !zero) {
|
|
return false;
|
|
}
|
|
|
|
BN_zero(zero.get());
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new()), remainder(BN_new());
|
|
if (!ret || !remainder ||
|
|
!BN_mul(ret.get(), a.get(), b.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A * B", product.get(), ret.get()) ||
|
|
!BN_div(ret.get(), remainder.get(), product.get(), a.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "Product / A", b.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Product % A", zero.get(), remainder.get()) ||
|
|
!BN_div(ret.get(), remainder.get(), product.get(), b.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "Product / B", a.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Product % B", zero.get(), remainder.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestQuotient(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B");
|
|
bssl::UniquePtr<BIGNUM> quotient = GetBIGNUM(t, "Quotient");
|
|
bssl::UniquePtr<BIGNUM> remainder = GetBIGNUM(t, "Remainder");
|
|
if (!a || !b || !quotient || !remainder) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new()), ret2(BN_new());
|
|
if (!ret || !ret2 ||
|
|
!BN_div(ret.get(), ret2.get(), a.get(), b.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A / B", quotient.get(), ret.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "A % B", remainder.get(), ret2.get()) ||
|
|
!BN_mul(ret.get(), quotient.get(), b.get(), ctx) ||
|
|
!BN_add(ret.get(), ret.get(), remainder.get()) ||
|
|
!ExpectBIGNUMsEqual(t, "Quotient * B + Remainder", a.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
// Test with |BN_mod_word| and |BN_div_word| if the divisor is small enough.
|
|
BN_ULONG b_word = BN_get_word(b.get());
|
|
if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) {
|
|
BN_ULONG remainder_word = BN_get_word(remainder.get());
|
|
assert(remainder_word != (BN_ULONG)-1);
|
|
if (!BN_copy(ret.get(), a.get())) {
|
|
return false;
|
|
}
|
|
BN_ULONG ret_word = BN_div_word(ret.get(), b_word);
|
|
if (ret_word != remainder_word) {
|
|
t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1
|
|
"\n",
|
|
ret_word, remainder_word);
|
|
return false;
|
|
}
|
|
if (!ExpectBIGNUMsEqual(t, "A / B (word)", quotient.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
ret_word = BN_mod_word(a.get(), b_word);
|
|
if (ret_word != remainder_word) {
|
|
t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1
|
|
"\n",
|
|
ret_word, remainder_word);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Test BN_nnmod.
|
|
if (!BN_is_negative(b.get())) {
|
|
bssl::UniquePtr<BIGNUM> nnmod(BN_new());
|
|
if (!nnmod ||
|
|
!BN_copy(nnmod.get(), remainder.get()) ||
|
|
(BN_is_negative(nnmod.get()) &&
|
|
!BN_add(nnmod.get(), nnmod.get(), b.get())) ||
|
|
!BN_nnmod(ret.get(), a.get(), b.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A % B (non-negative)", nnmod.get(),
|
|
ret.get())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestModMul(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B");
|
|
bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M");
|
|
bssl::UniquePtr<BIGNUM> mod_mul = GetBIGNUM(t, "ModMul");
|
|
if (!a || !b || !m || !mod_mul) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!ret ||
|
|
!BN_mod_mul(ret.get(), a.get(), b.get(), m.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A * B (mod M)", mod_mul.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_is_odd(m.get())) {
|
|
// Reduce |a| and |b| and test the Montgomery version.
|
|
bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new());
|
|
bssl::UniquePtr<BIGNUM> a_tmp(BN_new()), b_tmp(BN_new());
|
|
if (!mont || !a_tmp || !b_tmp ||
|
|
!BN_MONT_CTX_set(mont.get(), m.get(), ctx) ||
|
|
!BN_nnmod(a_tmp.get(), a.get(), m.get(), ctx) ||
|
|
!BN_nnmod(b_tmp.get(), b.get(), m.get(), ctx) ||
|
|
!BN_to_montgomery(a_tmp.get(), a_tmp.get(), mont.get(), ctx) ||
|
|
!BN_to_montgomery(b_tmp.get(), b_tmp.get(), mont.get(), ctx) ||
|
|
!BN_mod_mul_montgomery(ret.get(), a_tmp.get(), b_tmp.get(), mont.get(),
|
|
ctx) ||
|
|
!BN_from_montgomery(ret.get(), ret.get(), mont.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A * B (mod M) (Montgomery)",
|
|
mod_mul.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestModExp(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> e = GetBIGNUM(t, "E");
|
|
bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M");
|
|
bssl::UniquePtr<BIGNUM> mod_exp = GetBIGNUM(t, "ModExp");
|
|
if (!a || !e || !m || !mod_exp) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!ret ||
|
|
!BN_mod_exp(ret.get(), a.get(), e.get(), m.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A ^ E (mod M)", mod_exp.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_is_odd(m.get())) {
|
|
if (!BN_mod_exp_mont(ret.get(), a.get(), e.get(), m.get(), ctx, NULL) ||
|
|
!ExpectBIGNUMsEqual(t, "A ^ E (mod M) (Montgomery)", mod_exp.get(),
|
|
ret.get()) ||
|
|
!BN_mod_exp_mont_consttime(ret.get(), a.get(), e.get(), m.get(), ctx,
|
|
NULL) ||
|
|
!ExpectBIGNUMsEqual(t, "A ^ E (mod M) (constant-time)", mod_exp.get(),
|
|
ret.get())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestExp(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> e = GetBIGNUM(t, "E");
|
|
bssl::UniquePtr<BIGNUM> exp = GetBIGNUM(t, "Exp");
|
|
if (!a || !e || !exp) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!ret ||
|
|
!BN_exp(ret.get(), a.get(), e.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "A ^ E", exp.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestModSqrt(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> p = GetBIGNUM(t, "P");
|
|
bssl::UniquePtr<BIGNUM> mod_sqrt = GetBIGNUM(t, "ModSqrt");
|
|
bssl::UniquePtr<BIGNUM> mod_sqrt2(BN_new());
|
|
if (!a || !p || !mod_sqrt || !mod_sqrt2 ||
|
|
// There are two possible answers.
|
|
!BN_sub(mod_sqrt2.get(), p.get(), mod_sqrt.get())) {
|
|
return false;
|
|
}
|
|
|
|
// -0 is 0, not P.
|
|
if (BN_is_zero(mod_sqrt.get())) {
|
|
BN_zero(mod_sqrt2.get());
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!ret ||
|
|
!BN_mod_sqrt(ret.get(), a.get(), p.get(), ctx)) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_cmp(ret.get(), mod_sqrt2.get()) != 0 &&
|
|
!ExpectBIGNUMsEqual(t, "sqrt(A) (mod P)", mod_sqrt.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestNotModSquare(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> not_mod_square = GetBIGNUM(t, "NotModSquare");
|
|
bssl::UniquePtr<BIGNUM> p = GetBIGNUM(t, "P");
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!not_mod_square || !p || !ret) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_mod_sqrt(ret.get(), not_mod_square.get(), p.get(), ctx)) {
|
|
t->PrintLine("BN_mod_sqrt unexpectedly succeeded.");
|
|
return false;
|
|
}
|
|
|
|
uint32_t err = ERR_peek_error();
|
|
if (ERR_GET_LIB(err) == ERR_LIB_BN &&
|
|
ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
|
|
ERR_clear_error();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool TestModInv(FileTest *t, BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A");
|
|
bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M");
|
|
bssl::UniquePtr<BIGNUM> mod_inv = GetBIGNUM(t, "ModInv");
|
|
if (!a || !m || !mod_inv) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> ret(BN_new());
|
|
if (!ret ||
|
|
!BN_mod_inverse(ret.get(), a.get(), m.get(), ctx) ||
|
|
!ExpectBIGNUMsEqual(t, "inv(A) (mod M)", mod_inv.get(), ret.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct Test {
|
|
const char *name;
|
|
bool (*func)(FileTest *t, BN_CTX *ctx);
|
|
};
|
|
|
|
static const Test kTests[] = {
|
|
{"Sum", TestSum},
|
|
{"LShift1", TestLShift1},
|
|
{"LShift", TestLShift},
|
|
{"RShift", TestRShift},
|
|
{"Square", TestSquare},
|
|
{"Product", TestProduct},
|
|
{"Quotient", TestQuotient},
|
|
{"ModMul", TestModMul},
|
|
{"ModExp", TestModExp},
|
|
{"Exp", TestExp},
|
|
{"ModSqrt", TestModSqrt},
|
|
{"NotModSquare", TestNotModSquare},
|
|
{"ModInv", TestModInv},
|
|
};
|
|
|
|
static bool RunTest(FileTest *t, void *arg) {
|
|
BN_CTX *ctx = reinterpret_cast<BN_CTX *>(arg);
|
|
for (const Test &test : kTests) {
|
|
if (t->GetType() != test.name) {
|
|
continue;
|
|
}
|
|
return test.func(t, ctx);
|
|
}
|
|
t->PrintLine("Unknown test type: %s", t->GetType().c_str());
|
|
return false;
|
|
}
|
|
|
|
static bool TestBN2BinPadded(BN_CTX *ctx) {
|
|
uint8_t zeros[256], out[256], reference[128];
|
|
|
|
OPENSSL_memset(zeros, 0, sizeof(zeros));
|
|
|
|
// Test edge case at 0.
|
|
bssl::UniquePtr<BIGNUM> n(BN_new());
|
|
if (!n || !BN_bn2bin_padded(NULL, 0, n.get())) {
|
|
fprintf(stderr,
|
|
"BN_bn2bin_padded failed to encode 0 in an empty buffer.\n");
|
|
return false;
|
|
}
|
|
OPENSSL_memset(out, -1, sizeof(out));
|
|
if (!BN_bn2bin_padded(out, sizeof(out), n.get())) {
|
|
fprintf(stderr,
|
|
"BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n");
|
|
return false;
|
|
}
|
|
if (OPENSSL_memcmp(zeros, out, sizeof(out))) {
|
|
fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test a random numbers at various byte lengths.
|
|
for (size_t bytes = 128 - 7; bytes <= 128; bytes++) {
|
|
if (!BN_rand(n.get(), bytes * 8, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) {
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
if (BN_num_bytes(n.get()) != bytes ||
|
|
BN_bn2bin(n.get(), reference) != bytes) {
|
|
fprintf(stderr, "Bad result from BN_rand; bytes.\n");
|
|
return false;
|
|
}
|
|
// Empty buffer should fail.
|
|
if (BN_bn2bin_padded(NULL, 0, n.get())) {
|
|
fprintf(stderr,
|
|
"BN_bn2bin_padded incorrectly succeeded on empty buffer.\n");
|
|
return false;
|
|
}
|
|
// One byte short should fail.
|
|
if (BN_bn2bin_padded(out, bytes - 1, n.get())) {
|
|
fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n");
|
|
return false;
|
|
}
|
|
// Exactly right size should encode.
|
|
if (!BN_bn2bin_padded(out, bytes, n.get()) ||
|
|
OPENSSL_memcmp(out, reference, bytes) != 0) {
|
|
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
|
|
return false;
|
|
}
|
|
// Pad up one byte extra.
|
|
if (!BN_bn2bin_padded(out, bytes + 1, n.get()) ||
|
|
OPENSSL_memcmp(out + 1, reference, bytes) ||
|
|
OPENSSL_memcmp(out, zeros, 1)) {
|
|
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
|
|
return false;
|
|
}
|
|
// Pad up to 256.
|
|
if (!BN_bn2bin_padded(out, sizeof(out), n.get()) ||
|
|
OPENSSL_memcmp(out + sizeof(out) - bytes, reference, bytes) ||
|
|
OPENSSL_memcmp(out, zeros, sizeof(out) - bytes)) {
|
|
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestLittleEndian() {
|
|
bssl::UniquePtr<BIGNUM> x(BN_new());
|
|
bssl::UniquePtr<BIGNUM> y(BN_new());
|
|
if (!x || !y) {
|
|
fprintf(stderr, "BN_new failed to malloc.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test edge case at 0. Fill |out| with garbage to ensure |BN_bn2le_padded|
|
|
// wrote the result.
|
|
uint8_t out[256], zeros[256];
|
|
OPENSSL_memset(out, -1, sizeof(out));
|
|
OPENSSL_memset(zeros, 0, sizeof(zeros));
|
|
if (!BN_bn2le_padded(out, sizeof(out), x.get()) ||
|
|
OPENSSL_memcmp(zeros, out, sizeof(out))) {
|
|
fprintf(stderr, "BN_bn2le_padded failed to encode 0.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_le2bn(out, sizeof(out), y.get()) ||
|
|
BN_cmp(x.get(), y.get()) != 0) {
|
|
fprintf(stderr, "BN_le2bn failed to decode 0 correctly.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test random numbers at various byte lengths.
|
|
for (size_t bytes = 128 - 7; bytes <= 128; bytes++) {
|
|
if (!BN_rand(x.get(), bytes * 8, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) {
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
// Fill |out| with garbage to ensure |BN_bn2le_padded| wrote the result.
|
|
OPENSSL_memset(out, -1, sizeof(out));
|
|
if (!BN_bn2le_padded(out, sizeof(out), x.get())) {
|
|
fprintf(stderr, "BN_bn2le_padded failed to encode random value.\n");
|
|
return false;
|
|
}
|
|
|
|
// Compute the expected value by reversing the big-endian output.
|
|
uint8_t expected[sizeof(out)];
|
|
if (!BN_bn2bin_padded(expected, sizeof(expected), x.get())) {
|
|
return false;
|
|
}
|
|
for (size_t i = 0; i < sizeof(expected) / 2; i++) {
|
|
uint8_t tmp = expected[i];
|
|
expected[i] = expected[sizeof(expected) - 1 - i];
|
|
expected[sizeof(expected) - 1 - i] = tmp;
|
|
}
|
|
|
|
if (OPENSSL_memcmp(expected, out, sizeof(out))) {
|
|
fprintf(stderr, "BN_bn2le_padded failed to encode value correctly.\n");
|
|
hexdump(stderr, "Expected: ", expected, sizeof(expected));
|
|
hexdump(stderr, "Got: ", out, sizeof(out));
|
|
return false;
|
|
}
|
|
|
|
// Make sure the decoding produces the same BIGNUM.
|
|
if (!BN_le2bn(out, bytes, y.get()) ||
|
|
BN_cmp(x.get(), y.get()) != 0) {
|
|
bssl::UniquePtr<char> x_hex(BN_bn2hex(x.get())),
|
|
y_hex(BN_bn2hex(y.get()));
|
|
if (!x_hex || !y_hex) {
|
|
return false;
|
|
}
|
|
fprintf(stderr, "BN_le2bn failed to decode value correctly.\n");
|
|
fprintf(stderr, "Expected: %s\n", x_hex.get());
|
|
hexdump(stderr, "Encoding: ", out, bytes);
|
|
fprintf(stderr, "Got: %s\n", y_hex.get());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int DecimalToBIGNUM(bssl::UniquePtr<BIGNUM> *out, const char *in) {
|
|
BIGNUM *raw = NULL;
|
|
int ret = BN_dec2bn(&raw, in);
|
|
out->reset(raw);
|
|
return ret;
|
|
}
|
|
|
|
static bool TestDec2BN(BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> bn;
|
|
int ret = DecimalToBIGNUM(&bn, "0");
|
|
if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
ret = DecimalToBIGNUM(&bn, "256");
|
|
if (ret != 3 || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
ret = DecimalToBIGNUM(&bn, "-42");
|
|
if (ret != 3 || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
ret = DecimalToBIGNUM(&bn, "-0");
|
|
if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored");
|
|
if (ret != 2 || !BN_abs_is_word(bn.get(), 42) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestHex2BN(BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> bn;
|
|
int ret = HexToBIGNUM(&bn, "0");
|
|
if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
ret = HexToBIGNUM(&bn, "256");
|
|
if (ret != 3 || !BN_is_word(bn.get(), 0x256) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
ret = HexToBIGNUM(&bn, "-42");
|
|
if (ret != 3 || !BN_abs_is_word(bn.get(), 0x42) || !BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
ret = HexToBIGNUM(&bn, "-0");
|
|
if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored");
|
|
if (ret != 3 || !BN_is_word(bn.get(), 0xabc) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bssl::UniquePtr<BIGNUM> ASCIIToBIGNUM(const char *in) {
|
|
BIGNUM *raw = NULL;
|
|
if (!BN_asc2bn(&raw, in)) {
|
|
return nullptr;
|
|
}
|
|
return bssl::UniquePtr<BIGNUM>(raw);
|
|
}
|
|
|
|
static bool TestASC2BN(BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM("0");
|
|
if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
bn = ASCIIToBIGNUM("256");
|
|
if (!bn || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
bn = ASCIIToBIGNUM("-42");
|
|
if (!bn || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
bn = ASCIIToBIGNUM("0x1234");
|
|
if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
bn = ASCIIToBIGNUM("0X1234");
|
|
if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
bn = ASCIIToBIGNUM("-0xabcd");
|
|
if (!bn || !BN_abs_is_word(bn.get(), 0xabcd) || !BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
bn = ASCIIToBIGNUM("-0");
|
|
if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
bn = ASCIIToBIGNUM("123trailing garbage is ignored");
|
|
if (!bn || !BN_is_word(bn.get(), 123) || BN_is_negative(bn.get())) {
|
|
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct MPITest {
|
|
const char *base10;
|
|
const char *mpi;
|
|
size_t mpi_len;
|
|
};
|
|
|
|
static const MPITest kMPITests[] = {
|
|
{ "0", "\x00\x00\x00\x00", 4 },
|
|
{ "1", "\x00\x00\x00\x01\x01", 5 },
|
|
{ "-1", "\x00\x00\x00\x01\x81", 5 },
|
|
{ "128", "\x00\x00\x00\x02\x00\x80", 6 },
|
|
{ "256", "\x00\x00\x00\x02\x01\x00", 6 },
|
|
{ "-256", "\x00\x00\x00\x02\x81\x00", 6 },
|
|
};
|
|
|
|
static bool TestMPI() {
|
|
uint8_t scratch[8];
|
|
|
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMPITests); i++) {
|
|
const MPITest &test = kMPITests[i];
|
|
bssl::UniquePtr<BIGNUM> bn(ASCIIToBIGNUM(test.base10));
|
|
if (!bn) {
|
|
return false;
|
|
}
|
|
|
|
const size_t mpi_len = BN_bn2mpi(bn.get(), NULL);
|
|
if (mpi_len > sizeof(scratch)) {
|
|
fprintf(stderr, "MPI test #%u: MPI size is too large to test.\n",
|
|
(unsigned)i);
|
|
return false;
|
|
}
|
|
|
|
const size_t mpi_len2 = BN_bn2mpi(bn.get(), scratch);
|
|
if (mpi_len != mpi_len2) {
|
|
fprintf(stderr, "MPI test #%u: length changes.\n", (unsigned)i);
|
|
return false;
|
|
}
|
|
|
|
if (mpi_len != test.mpi_len ||
|
|
OPENSSL_memcmp(test.mpi, scratch, mpi_len) != 0) {
|
|
fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i);
|
|
hexdump(stderr, "Expected: ", test.mpi, test.mpi_len);
|
|
hexdump(stderr, "Got: ", scratch, mpi_len);
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> bn2(BN_mpi2bn(scratch, mpi_len, NULL));
|
|
if (bn2.get() == nullptr) {
|
|
fprintf(stderr, "MPI test #%u: failed to parse\n", (unsigned)i);
|
|
return false;
|
|
}
|
|
|
|
if (BN_cmp(bn.get(), bn2.get()) != 0) {
|
|
fprintf(stderr, "MPI test #%u: wrong result\n", (unsigned)i);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestRand() {
|
|
bssl::UniquePtr<BIGNUM> bn(BN_new());
|
|
if (!bn) {
|
|
return false;
|
|
}
|
|
|
|
// Test BN_rand accounts for degenerate cases with |top| and |bottom|
|
|
// parameters.
|
|
if (!BN_rand(bn.get(), 0, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY) ||
|
|
!BN_is_zero(bn.get())) {
|
|
fprintf(stderr, "BN_rand gave a bad result.\n");
|
|
return false;
|
|
}
|
|
if (!BN_rand(bn.get(), 0, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD) ||
|
|
!BN_is_zero(bn.get())) {
|
|
fprintf(stderr, "BN_rand gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_rand(bn.get(), 1, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY) ||
|
|
!BN_is_word(bn.get(), 1)) {
|
|
fprintf(stderr, "BN_rand gave a bad result.\n");
|
|
return false;
|
|
}
|
|
if (!BN_rand(bn.get(), 1, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY) ||
|
|
!BN_is_word(bn.get(), 1)) {
|
|
fprintf(stderr, "BN_rand gave a bad result.\n");
|
|
return false;
|
|
}
|
|
if (!BN_rand(bn.get(), 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ODD) ||
|
|
!BN_is_word(bn.get(), 1)) {
|
|
fprintf(stderr, "BN_rand gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_rand(bn.get(), 2, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY) ||
|
|
!BN_is_word(bn.get(), 3)) {
|
|
fprintf(stderr, "BN_rand gave a bad result.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct ASN1Test {
|
|
const char *value_ascii;
|
|
const char *der;
|
|
size_t der_len;
|
|
};
|
|
|
|
static const ASN1Test kASN1Tests[] = {
|
|
{"0", "\x02\x01\x00", 3},
|
|
{"1", "\x02\x01\x01", 3},
|
|
{"127", "\x02\x01\x7f", 3},
|
|
{"128", "\x02\x02\x00\x80", 4},
|
|
{"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7},
|
|
{"0x0102030405060708",
|
|
"\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10},
|
|
{"0xffffffffffffffff",
|
|
"\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11},
|
|
};
|
|
|
|
struct ASN1InvalidTest {
|
|
const char *der;
|
|
size_t der_len;
|
|
};
|
|
|
|
static const ASN1InvalidTest kASN1InvalidTests[] = {
|
|
// Bad tag.
|
|
{"\x03\x01\x00", 3},
|
|
// Empty contents.
|
|
{"\x02\x00", 2},
|
|
};
|
|
|
|
// kASN1BuggyTests contains incorrect encodings and the corresponding, expected
|
|
// results of |BN_parse_asn1_unsigned_buggy| given that input.
|
|
static const ASN1Test kASN1BuggyTests[] = {
|
|
// Negative numbers.
|
|
{"128", "\x02\x01\x80", 3},
|
|
{"255", "\x02\x01\xff", 3},
|
|
// Unnecessary leading zeros.
|
|
{"1", "\x02\x02\x00\x01", 4},
|
|
};
|
|
|
|
static bool TestASN1() {
|
|
for (const ASN1Test &test : kASN1Tests) {
|
|
bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM(test.value_ascii);
|
|
if (!bn) {
|
|
return false;
|
|
}
|
|
|
|
// Test that the input is correctly parsed.
|
|
bssl::UniquePtr<BIGNUM> bn2(BN_new());
|
|
if (!bn2) {
|
|
return false;
|
|
}
|
|
CBS cbs;
|
|
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
|
|
if (!BN_parse_asn1_unsigned(&cbs, bn2.get()) || CBS_len(&cbs) != 0) {
|
|
fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n");
|
|
return false;
|
|
}
|
|
if (BN_cmp(bn.get(), bn2.get()) != 0) {
|
|
fprintf(stderr, "Bad parse.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test the value serializes correctly.
|
|
bssl::ScopedCBB cbb;
|
|
uint8_t *der;
|
|
size_t der_len;
|
|
if (!CBB_init(cbb.get(), 0) ||
|
|
!BN_marshal_asn1(cbb.get(), bn.get()) ||
|
|
!CBB_finish(cbb.get(), &der, &der_len)) {
|
|
return false;
|
|
}
|
|
bssl::UniquePtr<uint8_t> delete_der(der);
|
|
if (der_len != test.der_len ||
|
|
OPENSSL_memcmp(der, reinterpret_cast<const uint8_t *>(test.der),
|
|
der_len) != 0) {
|
|
fprintf(stderr, "Bad serialization.\n");
|
|
return false;
|
|
}
|
|
|
|
// |BN_parse_asn1_unsigned_buggy| parses all valid input.
|
|
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
|
|
if (!BN_parse_asn1_unsigned_buggy(&cbs, bn2.get()) || CBS_len(&cbs) != 0) {
|
|
fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n");
|
|
return false;
|
|
}
|
|
if (BN_cmp(bn.get(), bn2.get()) != 0) {
|
|
fprintf(stderr, "Bad parse.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const ASN1InvalidTest &test : kASN1InvalidTests) {
|
|
bssl::UniquePtr<BIGNUM> bn(BN_new());
|
|
if (!bn) {
|
|
return false;
|
|
}
|
|
CBS cbs;
|
|
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
|
|
if (BN_parse_asn1_unsigned(&cbs, bn.get())) {
|
|
fprintf(stderr, "Parsed invalid input.\n");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
// All tests in kASN1InvalidTests are also rejected by
|
|
// |BN_parse_asn1_unsigned_buggy|.
|
|
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
|
|
if (BN_parse_asn1_unsigned_buggy(&cbs, bn.get())) {
|
|
fprintf(stderr, "Parsed invalid input.\n");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
}
|
|
|
|
for (const ASN1Test &test : kASN1BuggyTests) {
|
|
// These broken encodings are rejected by |BN_parse_asn1_unsigned|.
|
|
bssl::UniquePtr<BIGNUM> bn(BN_new());
|
|
if (!bn) {
|
|
return false;
|
|
}
|
|
|
|
CBS cbs;
|
|
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
|
|
if (BN_parse_asn1_unsigned(&cbs, bn.get())) {
|
|
fprintf(stderr, "Parsed invalid input.\n");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
// However |BN_parse_asn1_unsigned_buggy| accepts them.
|
|
bssl::UniquePtr<BIGNUM> bn2 = ASCIIToBIGNUM(test.value_ascii);
|
|
if (!bn2) {
|
|
return false;
|
|
}
|
|
|
|
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
|
|
if (!BN_parse_asn1_unsigned_buggy(&cbs, bn.get()) || CBS_len(&cbs) != 0) {
|
|
fprintf(stderr, "Parsing (invalid) ASN.1 INTEGER failed.\n");
|
|
return false;
|
|
}
|
|
|
|
if (BN_cmp(bn.get(), bn2.get()) != 0) {
|
|
fprintf(stderr, "\"Bad\" parse.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Serializing negative numbers is not supported.
|
|
bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM("-1");
|
|
if (!bn) {
|
|
return false;
|
|
}
|
|
bssl::ScopedCBB cbb;
|
|
if (!CBB_init(cbb.get(), 0) ||
|
|
BN_marshal_asn1(cbb.get(), bn.get())) {
|
|
fprintf(stderr, "Serialized negative number.\n");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestNegativeZero(BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a(BN_new());
|
|
bssl::UniquePtr<BIGNUM> b(BN_new());
|
|
bssl::UniquePtr<BIGNUM> c(BN_new());
|
|
if (!a || !b || !c) {
|
|
return false;
|
|
}
|
|
|
|
// Test that BN_mul never gives negative zero.
|
|
if (!BN_set_word(a.get(), 1)) {
|
|
return false;
|
|
}
|
|
BN_set_negative(a.get(), 1);
|
|
BN_zero(b.get());
|
|
if (!BN_mul(c.get(), a.get(), b.get(), ctx)) {
|
|
return false;
|
|
}
|
|
if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) {
|
|
fprintf(stderr, "Multiplication test failed.\n");
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<BIGNUM> numerator(BN_new()), denominator(BN_new());
|
|
if (!numerator || !denominator) {
|
|
return false;
|
|
}
|
|
|
|
// Test that BN_div never gives negative zero in the quotient.
|
|
if (!BN_set_word(numerator.get(), 1) ||
|
|
!BN_set_word(denominator.get(), 2)) {
|
|
return false;
|
|
}
|
|
BN_set_negative(numerator.get(), 1);
|
|
if (!BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx)) {
|
|
return false;
|
|
}
|
|
if (!BN_is_zero(a.get()) || BN_is_negative(a.get())) {
|
|
fprintf(stderr, "Incorrect quotient.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test that BN_div never gives negative zero in the remainder.
|
|
if (!BN_set_word(denominator.get(), 1)) {
|
|
return false;
|
|
}
|
|
if (!BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx)) {
|
|
return false;
|
|
}
|
|
if (!BN_is_zero(b.get()) || BN_is_negative(b.get())) {
|
|
fprintf(stderr, "Incorrect remainder.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test that BN_set_negative will not produce a negative zero.
|
|
BN_zero(a.get());
|
|
BN_set_negative(a.get(), 1);
|
|
if (BN_is_negative(a.get())) {
|
|
fprintf(stderr, "BN_set_negative produced a negative zero.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test that forcibly creating a negative zero does not break |BN_bn2hex| or
|
|
// |BN_bn2dec|.
|
|
a->neg = 1;
|
|
bssl::UniquePtr<char> dec(BN_bn2dec(a.get()));
|
|
bssl::UniquePtr<char> hex(BN_bn2hex(a.get()));
|
|
if (!dec || !hex ||
|
|
strcmp(dec.get(), "-0") != 0 ||
|
|
strcmp(hex.get(), "-0") != 0) {
|
|
fprintf(stderr, "BN_bn2dec or BN_bn2hex failed with negative zero.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test that |BN_rshift| and |BN_rshift1| will not produce a negative zero.
|
|
if (!BN_set_word(a.get(), 1)) {
|
|
return false;
|
|
}
|
|
|
|
BN_set_negative(a.get(), 1);
|
|
if (!BN_rshift(b.get(), a.get(), 1) ||
|
|
!BN_rshift1(c.get(), a.get())) {
|
|
return false;
|
|
}
|
|
|
|
if (!BN_is_zero(b.get()) || BN_is_negative(b.get())) {
|
|
fprintf(stderr, "BN_rshift(-1, 1) produced the wrong result.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) {
|
|
fprintf(stderr, "BN_rshift1(-1) produced the wrong result.\n");
|
|
return false;
|
|
}
|
|
|
|
// Test that |BN_div_word| will not produce a negative zero.
|
|
if (BN_div_word(a.get(), 2) == (BN_ULONG)-1) {
|
|
return false;
|
|
}
|
|
|
|
if (!BN_is_zero(a.get()) || BN_is_negative(a.get())) {
|
|
fprintf(stderr, "BN_div_word(-1, 2) produced the wrong result.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestBadModulus(BN_CTX *ctx) {
|
|
bssl::UniquePtr<BIGNUM> a(BN_new());
|
|
bssl::UniquePtr<BIGNUM> b(BN_new());
|
|
bssl::UniquePtr<BIGNUM> zero(BN_new());
|
|
bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new());
|
|
if (!a || !b || !zero || !mont) {
|
|
return false;
|
|
}
|
|
|
|
BN_zero(zero.get());
|
|
|
|
if (BN_div(a.get(), b.get(), BN_value_one(), zero.get(), ctx)) {
|
|
fprintf(stderr, "Division by zero unexpectedly succeeded.\n");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
if (BN_mod_mul(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) {
|
|
fprintf(stderr, "BN_mod_mul with zero modulus unexpectedly succeeded.\n");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
if (BN_mod_exp(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) {
|
|
fprintf(stderr, "BN_mod_exp with zero modulus unexpectedly succeeded.\n");
|
|
return 0;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx,
|
|
NULL)) {
|
|
fprintf(stderr,
|
|
"BN_mod_exp_mont with zero modulus unexpectedly succeeded.\n");
|
|
return 0;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(),
|
|
zero.get(), ctx, nullptr)) {
|
|
fprintf(stderr,
|
|
"BN_mod_exp_mont_consttime with zero modulus unexpectedly "
|
|
"succeeded.\n");
|
|
return 0;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
if (BN_MONT_CTX_set(mont.get(), zero.get(), ctx)) {
|
|
fprintf(stderr,
|
|
"BN_MONT_CTX_set unexpectedly succeeded for zero modulus.\n");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
// Some operations also may not be used with an even modulus.
|
|
|
|
if (!BN_set_word(b.get(), 16)) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_MONT_CTX_set(mont.get(), b.get(), ctx)) {
|
|
fprintf(stderr,
|
|
"BN_MONT_CTX_set unexpectedly succeeded for even modulus.\n");
|
|
return false;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), b.get(), ctx,
|
|
NULL)) {
|
|
fprintf(stderr,
|
|
"BN_mod_exp_mont with even modulus unexpectedly succeeded.\n");
|
|
return 0;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(),
|
|
b.get(), ctx, nullptr)) {
|
|
fprintf(stderr,
|
|
"BN_mod_exp_mont_consttime with even modulus unexpectedly "
|
|
"succeeded.\n");
|
|
return 0;
|
|
}
|
|
ERR_clear_error();
|
|
|
|
return true;
|
|
}
|
|
|
|
// TestExpModZero tests that 1**0 mod 1 == 0.
|
|
static bool TestExpModZero() {
|
|
bssl::UniquePtr<BIGNUM> zero(BN_new()), a(BN_new()), r(BN_new());
|
|
if (!zero || !a || !r ||
|
|
!BN_rand(a.get(), 1024, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) {
|
|
return false;
|
|
}
|
|
BN_zero(zero.get());
|
|
|
|
if (!BN_mod_exp(r.get(), a.get(), zero.get(), BN_value_one(), nullptr) ||
|
|
!BN_is_zero(r.get()) ||
|
|
!BN_mod_exp_mont(r.get(), a.get(), zero.get(), BN_value_one(), nullptr,
|
|
nullptr) ||
|
|
!BN_is_zero(r.get()) ||
|
|
!BN_mod_exp_mont_consttime(r.get(), a.get(), zero.get(), BN_value_one(),
|
|
nullptr, nullptr) ||
|
|
!BN_is_zero(r.get()) ||
|
|
!BN_mod_exp_mont_word(r.get(), 42, zero.get(), BN_value_one(), nullptr,
|
|
nullptr) ||
|
|
!BN_is_zero(r.get())) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestSmallPrime(BN_CTX *ctx) {
|
|
static const unsigned kBits = 10;
|
|
|
|
bssl::UniquePtr<BIGNUM> r(BN_new());
|
|
if (!r || !BN_generate_prime_ex(r.get(), static_cast<int>(kBits), 0, NULL,
|
|
NULL, NULL)) {
|
|
return false;
|
|
}
|
|
if (BN_num_bits(r.get()) != kBits) {
|
|
fprintf(stderr, "Expected %u bit prime, got %u bit number\n", kBits,
|
|
BN_num_bits(r.get()));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestCmpWord() {
|
|
static const BN_ULONG kMaxWord = (BN_ULONG)-1;
|
|
|
|
bssl::UniquePtr<BIGNUM> r(BN_new());
|
|
if (!r ||
|
|
!BN_set_word(r.get(), 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_cmp_word(r.get(), 0) != 0 ||
|
|
BN_cmp_word(r.get(), 1) >= 0 ||
|
|
BN_cmp_word(r.get(), kMaxWord) >= 0) {
|
|
fprintf(stderr, "BN_cmp_word compared against 0 incorrectly.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_set_word(r.get(), 100)) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_cmp_word(r.get(), 0) <= 0 ||
|
|
BN_cmp_word(r.get(), 99) <= 0 ||
|
|
BN_cmp_word(r.get(), 100) != 0 ||
|
|
BN_cmp_word(r.get(), 101) >= 0 ||
|
|
BN_cmp_word(r.get(), kMaxWord) >= 0) {
|
|
fprintf(stderr, "BN_cmp_word compared against 100 incorrectly.\n");
|
|
return false;
|
|
}
|
|
|
|
BN_set_negative(r.get(), 1);
|
|
|
|
if (BN_cmp_word(r.get(), 0) >= 0 ||
|
|
BN_cmp_word(r.get(), 100) >= 0 ||
|
|
BN_cmp_word(r.get(), kMaxWord) >= 0) {
|
|
fprintf(stderr, "BN_cmp_word compared against -100 incorrectly.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_set_word(r.get(), kMaxWord)) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_cmp_word(r.get(), 0) <= 0 ||
|
|
BN_cmp_word(r.get(), kMaxWord - 1) <= 0 ||
|
|
BN_cmp_word(r.get(), kMaxWord) != 0) {
|
|
fprintf(stderr, "BN_cmp_word compared against kMaxWord incorrectly.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_add(r.get(), r.get(), BN_value_one())) {
|
|
return false;
|
|
}
|
|
|
|
if (BN_cmp_word(r.get(), 0) <= 0 ||
|
|
BN_cmp_word(r.get(), kMaxWord) <= 0) {
|
|
fprintf(stderr, "BN_cmp_word compared against kMaxWord + 1 incorrectly.\n");
|
|
return false;
|
|
}
|
|
|
|
BN_set_negative(r.get(), 1);
|
|
|
|
if (BN_cmp_word(r.get(), 0) >= 0 ||
|
|
BN_cmp_word(r.get(), kMaxWord) >= 0) {
|
|
fprintf(stderr,
|
|
"BN_cmp_word compared against -kMaxWord - 1 incorrectly.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestBN2Dec() {
|
|
static const char *kBN2DecTests[] = {
|
|
"0",
|
|
"1",
|
|
"-1",
|
|
"100",
|
|
"-100",
|
|
"123456789012345678901234567890",
|
|
"-123456789012345678901234567890",
|
|
"123456789012345678901234567890123456789012345678901234567890",
|
|
"-123456789012345678901234567890123456789012345678901234567890",
|
|
};
|
|
|
|
for (const char *test : kBN2DecTests) {
|
|
bssl::UniquePtr<BIGNUM> bn;
|
|
int ret = DecimalToBIGNUM(&bn, test);
|
|
if (ret == 0) {
|
|
return false;
|
|
}
|
|
|
|
bssl::UniquePtr<char> dec(BN_bn2dec(bn.get()));
|
|
if (!dec) {
|
|
fprintf(stderr, "BN_bn2dec failed on %s.\n", test);
|
|
return false;
|
|
}
|
|
|
|
if (strcmp(dec.get(), test) != 0) {
|
|
fprintf(stderr, "BN_bn2dec gave %s, wanted %s.\n", dec.get(), test);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TestBNSetGetU64() {
|
|
static const struct {
|
|
const char *hex;
|
|
uint64_t value;
|
|
} kU64Tests[] = {
|
|
{"0", UINT64_C(0x0)},
|
|
{"1", UINT64_C(0x1)},
|
|
{"ffffffff", UINT64_C(0xffffffff)},
|
|
{"100000000", UINT64_C(0x100000000)},
|
|
{"ffffffffffffffff", UINT64_C(0xffffffffffffffff)},
|
|
};
|
|
|
|
for (const auto& test : kU64Tests) {
|
|
bssl::UniquePtr<BIGNUM> bn(BN_new()), expected;
|
|
if (!bn ||
|
|
!BN_set_u64(bn.get(), test.value) ||
|
|
!HexToBIGNUM(&expected, test.hex) ||
|
|
BN_cmp(bn.get(), expected.get()) != 0) {
|
|
fprintf(stderr, "BN_set_u64 test failed for 0x%s.\n", test.hex);
|
|
ERR_print_errors_fp(stderr);
|
|
return false;
|
|
}
|
|
|
|
uint64_t tmp;
|
|
if (!BN_get_u64(bn.get(), &tmp) || tmp != test.value) {
|
|
fprintf(stderr, "BN_get_u64 test failed for 0x%s.\n", test.hex);
|
|
return false;
|
|
}
|
|
|
|
BN_set_negative(bn.get(), 1);
|
|
if (!BN_get_u64(bn.get(), &tmp) || tmp != test.value) {
|
|
fprintf(stderr, "BN_get_u64 test failed for -0x%s.\n", test.hex);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Test that BN_get_u64 fails on large numbers.
|
|
bssl::UniquePtr<BIGNUM> bn(BN_new());
|
|
if (!BN_lshift(bn.get(), BN_value_one(), 64)) {
|
|
return false;
|
|
}
|
|
|
|
uint64_t tmp;
|
|
if (BN_get_u64(bn.get(), &tmp)) {
|
|
fprintf(stderr, "BN_get_u64 of 2^64 unexpectedly succeeded.\n");
|
|
return false;
|
|
}
|
|
|
|
BN_set_negative(bn.get(), 1);
|
|
if (BN_get_u64(bn.get(), &tmp)) {
|
|
fprintf(stderr, "BN_get_u64 of -2^64 unexpectedly succeeded.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
CRYPTO_library_init();
|
|
|
|
if (argc != 2) {
|
|
fprintf(stderr, "%s TEST_FILE\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
|
|
if (!ctx) {
|
|
return 1;
|
|
}
|
|
|
|
if (!TestBN2BinPadded(ctx.get()) ||
|
|
!TestDec2BN(ctx.get()) ||
|
|
!TestHex2BN(ctx.get()) ||
|
|
!TestASC2BN(ctx.get()) ||
|
|
!TestLittleEndian() ||
|
|
!TestMPI() ||
|
|
!TestRand() ||
|
|
!TestASN1() ||
|
|
!TestNegativeZero(ctx.get()) ||
|
|
!TestBadModulus(ctx.get()) ||
|
|
!TestExpModZero() ||
|
|
!TestSmallPrime(ctx.get()) ||
|
|
!TestCmpWord() ||
|
|
!TestBN2Dec() ||
|
|
!TestBNSetGetU64()) {
|
|
return 1;
|
|
}
|
|
|
|
return FileTestMain(RunTest, ctx.get(), argv[1]);
|
|
}
|