cba7987978
This reverts commit f6942f0d22
.
Reason for revert: This doesn't actually work in clang-cl. I
forgot we didn't have the clang-cl try bots enabled! :-( I
believe __asm__ is still okay, but I'll try it by hand
tomorrow.
Original change's description:
> Use uint128_t and __asm__ in clang-cl.
>
> clang-cl does not define __GNUC__ but is still a functioning clang. We
> should be able to use our uint128_t and __asm__ code in it on Windows.
>
> Change-Id: I67310ee68baa0c0c947b2441c265b019ef12af7e
> Reviewed-on: https://boringssl-review.googlesource.com/22184
> Commit-Queue: Adam Langley <agl@google.com>
> Reviewed-by: Adam Langley <agl@google.com>
> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
TBR=agl@google.com,davidben@google.com
Change-Id: I5c7e0391cd9c2e8cc0dfde37e174edaf5d17db22
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://boringssl-review.googlesource.com/22224
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
727 lines
18 KiB
C
727 lines
18 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
* All rights reserved.
|
||
*
|
||
* This package is an SSL implementation written
|
||
* by Eric Young (eay@cryptsoft.com).
|
||
* The implementation was written so as to conform with Netscapes SSL.
|
||
*
|
||
* This library is free for commercial and non-commercial use as long as
|
||
* the following conditions are aheared to. The following conditions
|
||
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
* included with this distribution is covered by the same copyright terms
|
||
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
*
|
||
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
* the code are not to be removed.
|
||
* If this package is used in a product, Eric Young should be given attribution
|
||
* as the author of the parts of the library used.
|
||
* This can be in the form of a textual message at program startup or
|
||
* in documentation (online or textual) provided with the package.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. All advertising materials mentioning features or use of this software
|
||
* must display the following acknowledgement:
|
||
* "This product includes cryptographic software written by
|
||
* Eric Young (eay@cryptsoft.com)"
|
||
* The word 'cryptographic' can be left out if the rouines from the library
|
||
* being used are not cryptographic related :-).
|
||
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
* the apps directory (application code) you must include an acknowledgement:
|
||
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*
|
||
* The licence and distribution terms for any publically available version or
|
||
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
* copied and put under another distribution licence
|
||
* [including the GNU Public Licence.] */
|
||
|
||
#include <openssl/bn.h>
|
||
|
||
#include <assert.h>
|
||
#include <limits.h>
|
||
|
||
#include <openssl/err.h>
|
||
|
||
#include "internal.h"
|
||
|
||
|
||
#if !defined(BN_ULLONG)
|
||
// bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
|
||
// which must fit in a |BN_ULONG|.
|
||
static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
|
||
BN_ULONG dh, dl, q, ret = 0, th, tl, t;
|
||
int i, count = 2;
|
||
|
||
if (d == 0) {
|
||
return BN_MASK2;
|
||
}
|
||
|
||
i = BN_num_bits_word(d);
|
||
assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
|
||
|
||
i = BN_BITS2 - i;
|
||
if (h >= d) {
|
||
h -= d;
|
||
}
|
||
|
||
if (i) {
|
||
d <<= i;
|
||
h = (h << i) | (l >> (BN_BITS2 - i));
|
||
l <<= i;
|
||
}
|
||
dh = (d & BN_MASK2h) >> BN_BITS4;
|
||
dl = (d & BN_MASK2l);
|
||
for (;;) {
|
||
if ((h >> BN_BITS4) == dh) {
|
||
q = BN_MASK2l;
|
||
} else {
|
||
q = h / dh;
|
||
}
|
||
|
||
th = q * dh;
|
||
tl = dl * q;
|
||
for (;;) {
|
||
t = h - th;
|
||
if ((t & BN_MASK2h) ||
|
||
((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
|
||
break;
|
||
}
|
||
q--;
|
||
th -= dh;
|
||
tl -= dl;
|
||
}
|
||
t = (tl >> BN_BITS4);
|
||
tl = (tl << BN_BITS4) & BN_MASK2h;
|
||
th += t;
|
||
|
||
if (l < tl) {
|
||
th++;
|
||
}
|
||
l -= tl;
|
||
if (h < th) {
|
||
h += d;
|
||
q--;
|
||
}
|
||
h -= th;
|
||
|
||
if (--count == 0) {
|
||
break;
|
||
}
|
||
|
||
ret = q << BN_BITS4;
|
||
h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
|
||
l = (l & BN_MASK2l) << BN_BITS4;
|
||
}
|
||
|
||
ret |= q;
|
||
return ret;
|
||
}
|
||
#endif // !defined(BN_ULLONG)
|
||
|
||
static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
|
||
BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
|
||
// GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
|
||
// the |BN_ULLONG|-based C code is used.
|
||
//
|
||
// GCC bugs:
|
||
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
|
||
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
|
||
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
|
||
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
|
||
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
|
||
//
|
||
// Clang bugs:
|
||
// * https://llvm.org/bugs/show_bug.cgi?id=6397
|
||
// * https://llvm.org/bugs/show_bug.cgi?id=12418
|
||
//
|
||
// These issues aren't specific to x86 and x86_64, so it might be worthwhile
|
||
// to add more assembly language implementations.
|
||
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) && defined(__GNUC__)
|
||
__asm__ volatile (
|
||
"divl %4"
|
||
: "=a"(*quotient_out), "=d"(*rem_out)
|
||
: "a"(n1), "d"(n0), "rm"(d0)
|
||
: "cc" );
|
||
#elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && defined(__GNUC__)
|
||
__asm__ volatile (
|
||
"divq %4"
|
||
: "=a"(*quotient_out), "=d"(*rem_out)
|
||
: "a"(n1), "d"(n0), "rm"(d0)
|
||
: "cc" );
|
||
#else
|
||
#if defined(BN_ULLONG)
|
||
BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
|
||
*quotient_out = (BN_ULONG)(n / d0);
|
||
#else
|
||
*quotient_out = bn_div_words(n0, n1, d0);
|
||
#endif
|
||
*rem_out = n1 - (*quotient_out * d0);
|
||
#endif
|
||
}
|
||
|
||
// BN_div computes dv := num / divisor, rounding towards
|
||
// zero, and sets up rm such that dv*divisor + rm = num holds.
|
||
// Thus:
|
||
// dv->neg == num->neg ^ divisor->neg (unless the result is zero)
|
||
// rm->neg == num->neg (unless the remainder is zero)
|
||
// If 'dv' or 'rm' is NULL, the respective value is not returned.
|
||
//
|
||
// This was specifically designed to contain fewer branches that may leak
|
||
// sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
|
||
// and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and
|
||
// Jean-Pierre Seifert.
|
||
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
||
BN_CTX *ctx) {
|
||
int norm_shift, i, loop;
|
||
BIGNUM *tmp, wnum, *snum, *sdiv, *res;
|
||
BN_ULONG *resp, *wnump;
|
||
BN_ULONG d0, d1;
|
||
int num_n, div_n;
|
||
|
||
// Invalid zero-padding would have particularly bad consequences
|
||
// so don't just rely on bn_check_top() here
|
||
if ((num->top > 0 && num->d[num->top - 1] == 0) ||
|
||
(divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
|
||
OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
|
||
return 0;
|
||
}
|
||
|
||
if (BN_is_zero(divisor)) {
|
||
OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
|
||
return 0;
|
||
}
|
||
|
||
BN_CTX_start(ctx);
|
||
tmp = BN_CTX_get(ctx);
|
||
snum = BN_CTX_get(ctx);
|
||
sdiv = BN_CTX_get(ctx);
|
||
if (dv == NULL) {
|
||
res = BN_CTX_get(ctx);
|
||
} else {
|
||
res = dv;
|
||
}
|
||
if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
// First we normalise the numbers
|
||
norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
|
||
if (!(BN_lshift(sdiv, divisor, norm_shift))) {
|
||
goto err;
|
||
}
|
||
sdiv->neg = 0;
|
||
norm_shift += BN_BITS2;
|
||
if (!(BN_lshift(snum, num, norm_shift))) {
|
||
goto err;
|
||
}
|
||
snum->neg = 0;
|
||
|
||
// Since we don't want to have special-case logic for the case where snum is
|
||
// larger than sdiv, we pad snum with enough zeroes without changing its
|
||
// value.
|
||
if (snum->top <= sdiv->top + 1) {
|
||
if (!bn_wexpand(snum, sdiv->top + 2)) {
|
||
goto err;
|
||
}
|
||
for (i = snum->top; i < sdiv->top + 2; i++) {
|
||
snum->d[i] = 0;
|
||
}
|
||
snum->top = sdiv->top + 2;
|
||
} else {
|
||
if (!bn_wexpand(snum, snum->top + 1)) {
|
||
goto err;
|
||
}
|
||
snum->d[snum->top] = 0;
|
||
snum->top++;
|
||
}
|
||
|
||
div_n = sdiv->top;
|
||
num_n = snum->top;
|
||
loop = num_n - div_n;
|
||
// Lets setup a 'window' into snum
|
||
// This is the part that corresponds to the current
|
||
// 'area' being divided
|
||
wnum.neg = 0;
|
||
wnum.d = &(snum->d[loop]);
|
||
wnum.top = div_n;
|
||
// only needed when BN_ucmp messes up the values between top and max
|
||
wnum.dmax = snum->dmax - loop; // so we don't step out of bounds
|
||
|
||
// Get the top 2 words of sdiv
|
||
// div_n=sdiv->top;
|
||
d0 = sdiv->d[div_n - 1];
|
||
d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
|
||
|
||
// pointer to the 'top' of snum
|
||
wnump = &(snum->d[num_n - 1]);
|
||
|
||
// Setup to 'res'
|
||
res->neg = (num->neg ^ divisor->neg);
|
||
if (!bn_wexpand(res, (loop + 1))) {
|
||
goto err;
|
||
}
|
||
res->top = loop - 1;
|
||
resp = &(res->d[loop - 1]);
|
||
|
||
// space for temp
|
||
if (!bn_wexpand(tmp, (div_n + 1))) {
|
||
goto err;
|
||
}
|
||
|
||
// if res->top == 0 then clear the neg value otherwise decrease
|
||
// the resp pointer
|
||
if (res->top == 0) {
|
||
res->neg = 0;
|
||
} else {
|
||
resp--;
|
||
}
|
||
|
||
for (i = 0; i < loop - 1; i++, wnump--, resp--) {
|
||
BN_ULONG q, l0;
|
||
// the first part of the loop uses the top two words of snum and sdiv to
|
||
// calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
|
||
BN_ULONG n0, n1, rem = 0;
|
||
|
||
n0 = wnump[0];
|
||
n1 = wnump[-1];
|
||
if (n0 == d0) {
|
||
q = BN_MASK2;
|
||
} else {
|
||
// n0 < d0
|
||
bn_div_rem_words(&q, &rem, n0, n1, d0);
|
||
|
||
#ifdef BN_ULLONG
|
||
BN_ULLONG t2 = (BN_ULLONG)d1 * q;
|
||
for (;;) {
|
||
if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) {
|
||
break;
|
||
}
|
||
q--;
|
||
rem += d0;
|
||
if (rem < d0) {
|
||
break; // don't let rem overflow
|
||
}
|
||
t2 -= d1;
|
||
}
|
||
#else // !BN_ULLONG
|
||
BN_ULONG t2l, t2h;
|
||
BN_UMULT_LOHI(t2l, t2h, d1, q);
|
||
for (;;) {
|
||
if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) {
|
||
break;
|
||
}
|
||
q--;
|
||
rem += d0;
|
||
if (rem < d0) {
|
||
break; // don't let rem overflow
|
||
}
|
||
if (t2l < d1) {
|
||
t2h--;
|
||
}
|
||
t2l -= d1;
|
||
}
|
||
#endif // !BN_ULLONG
|
||
}
|
||
|
||
l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
|
||
tmp->d[div_n] = l0;
|
||
wnum.d--;
|
||
// ingore top values of the bignums just sub the two
|
||
// BN_ULONG arrays with bn_sub_words
|
||
if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
|
||
// Note: As we have considered only the leading
|
||
// two BN_ULONGs in the calculation of q, sdiv * q
|
||
// might be greater than wnum (but then (q-1) * sdiv
|
||
// is less or equal than wnum)
|
||
q--;
|
||
if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
|
||
// we can't have an overflow here (assuming
|
||
// that q != 0, but if q == 0 then tmp is
|
||
// zero anyway)
|
||
(*wnump)++;
|
||
}
|
||
}
|
||
// store part of the result
|
||
*resp = q;
|
||
}
|
||
bn_correct_top(snum);
|
||
if (rm != NULL) {
|
||
// Keep a copy of the neg flag in num because if rm==num
|
||
// BN_rshift() will overwrite it.
|
||
int neg = num->neg;
|
||
if (!BN_rshift(rm, snum, norm_shift)) {
|
||
goto err;
|
||
}
|
||
if (!BN_is_zero(rm)) {
|
||
rm->neg = neg;
|
||
}
|
||
}
|
||
bn_correct_top(res);
|
||
BN_CTX_end(ctx);
|
||
return 1;
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return 0;
|
||
}
|
||
|
||
int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
|
||
if (!(BN_mod(r, m, d, ctx))) {
|
||
return 0;
|
||
}
|
||
if (!r->neg) {
|
||
return 1;
|
||
}
|
||
|
||
// now -|d| < r < 0, so we have to set r := r + |d|.
|
||
return (d->neg ? BN_sub : BN_add)(r, r, d);
|
||
}
|
||
|
||
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
||
BN_CTX *ctx) {
|
||
if (!BN_add(r, a, b)) {
|
||
return 0;
|
||
}
|
||
return BN_nnmod(r, r, m, ctx);
|
||
}
|
||
|
||
int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
||
const BIGNUM *m) {
|
||
if (!BN_uadd(r, a, b)) {
|
||
return 0;
|
||
}
|
||
if (BN_ucmp(r, m) >= 0) {
|
||
return BN_usub(r, r, m);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
||
BN_CTX *ctx) {
|
||
if (!BN_sub(r, a, b)) {
|
||
return 0;
|
||
}
|
||
return BN_nnmod(r, r, m, ctx);
|
||
}
|
||
|
||
// BN_mod_sub variant that may be used if both a and b are non-negative
|
||
// and less than m
|
||
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
||
const BIGNUM *m) {
|
||
if (!BN_sub(r, a, b)) {
|
||
return 0;
|
||
}
|
||
if (r->neg) {
|
||
return BN_add(r, r, m);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
||
BN_CTX *ctx) {
|
||
BIGNUM *t;
|
||
int ret = 0;
|
||
|
||
BN_CTX_start(ctx);
|
||
t = BN_CTX_get(ctx);
|
||
if (t == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
if (a == b) {
|
||
if (!BN_sqr(t, a, ctx)) {
|
||
goto err;
|
||
}
|
||
} else {
|
||
if (!BN_mul(t, a, b, ctx)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
if (!BN_nnmod(r, t, m, ctx)) {
|
||
goto err;
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
|
||
if (!BN_sqr(r, a, ctx)) {
|
||
return 0;
|
||
}
|
||
|
||
// r->neg == 0, thus we don't need BN_nnmod
|
||
return BN_mod(r, r, m, ctx);
|
||
}
|
||
|
||
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
|
||
BN_CTX *ctx) {
|
||
BIGNUM *abs_m = NULL;
|
||
int ret;
|
||
|
||
if (!BN_nnmod(r, a, m, ctx)) {
|
||
return 0;
|
||
}
|
||
|
||
if (m->neg) {
|
||
abs_m = BN_dup(m);
|
||
if (abs_m == NULL) {
|
||
return 0;
|
||
}
|
||
abs_m->neg = 0;
|
||
}
|
||
|
||
ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
|
||
|
||
BN_free(abs_m);
|
||
return ret;
|
||
}
|
||
|
||
int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
|
||
if (r != a) {
|
||
if (BN_copy(r, a) == NULL) {
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
while (n > 0) {
|
||
int max_shift;
|
||
|
||
// 0 < r < m
|
||
max_shift = BN_num_bits(m) - BN_num_bits(r);
|
||
// max_shift >= 0
|
||
|
||
if (max_shift < 0) {
|
||
OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
|
||
return 0;
|
||
}
|
||
|
||
if (max_shift > n) {
|
||
max_shift = n;
|
||
}
|
||
|
||
if (max_shift) {
|
||
if (!BN_lshift(r, r, max_shift)) {
|
||
return 0;
|
||
}
|
||
n -= max_shift;
|
||
} else {
|
||
if (!BN_lshift1(r, r)) {
|
||
return 0;
|
||
}
|
||
--n;
|
||
}
|
||
|
||
// BN_num_bits(r) <= BN_num_bits(m)
|
||
if (BN_cmp(r, m) >= 0) {
|
||
if (!BN_sub(r, r, m)) {
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
|
||
if (!BN_lshift1(r, a)) {
|
||
return 0;
|
||
}
|
||
|
||
return BN_nnmod(r, r, m, ctx);
|
||
}
|
||
|
||
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
|
||
if (!BN_lshift1(r, a)) {
|
||
return 0;
|
||
}
|
||
if (BN_cmp(r, m) >= 0) {
|
||
return BN_sub(r, r, m);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
|
||
BN_ULONG ret = 0;
|
||
int i, j;
|
||
|
||
w &= BN_MASK2;
|
||
|
||
if (!w) {
|
||
// actually this an error (division by zero)
|
||
return (BN_ULONG) - 1;
|
||
}
|
||
|
||
if (a->top == 0) {
|
||
return 0;
|
||
}
|
||
|
||
// normalize input for |bn_div_rem_words|.
|
||
j = BN_BITS2 - BN_num_bits_word(w);
|
||
w <<= j;
|
||
if (!BN_lshift(a, a, j)) {
|
||
return (BN_ULONG) - 1;
|
||
}
|
||
|
||
for (i = a->top - 1; i >= 0; i--) {
|
||
BN_ULONG l = a->d[i];
|
||
BN_ULONG d;
|
||
BN_ULONG unused_rem;
|
||
bn_div_rem_words(&d, &unused_rem, ret, l, w);
|
||
ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
|
||
a->d[i] = d;
|
||
}
|
||
|
||
if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
|
||
a->top--;
|
||
}
|
||
|
||
if (a->top == 0) {
|
||
a->neg = 0;
|
||
}
|
||
|
||
ret >>= j;
|
||
return ret;
|
||
}
|
||
|
||
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
|
||
#ifndef BN_ULLONG
|
||
BN_ULONG ret = 0;
|
||
#else
|
||
BN_ULLONG ret = 0;
|
||
#endif
|
||
int i;
|
||
|
||
if (w == 0) {
|
||
return (BN_ULONG) -1;
|
||
}
|
||
|
||
#ifndef BN_ULLONG
|
||
// If |w| is too long and we don't have |BN_ULLONG| then we need to fall back
|
||
// to using |BN_div_word|.
|
||
if (w > ((BN_ULONG)1 << BN_BITS4)) {
|
||
BIGNUM *tmp = BN_dup(a);
|
||
if (tmp == NULL) {
|
||
return (BN_ULONG)-1;
|
||
}
|
||
ret = BN_div_word(tmp, w);
|
||
BN_free(tmp);
|
||
return ret;
|
||
}
|
||
#endif
|
||
|
||
w &= BN_MASK2;
|
||
for (i = a->top - 1; i >= 0; i--) {
|
||
#ifndef BN_ULLONG
|
||
ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
|
||
ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
|
||
#else
|
||
ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
|
||
#endif
|
||
}
|
||
return (BN_ULONG)ret;
|
||
}
|
||
|
||
int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
|
||
if (e == 0 || a->top == 0) {
|
||
BN_zero(r);
|
||
return 1;
|
||
}
|
||
|
||
size_t num_words = 1 + ((e - 1) / BN_BITS2);
|
||
|
||
// If |a| definitely has less than |e| bits, just BN_copy.
|
||
if ((size_t) a->top < num_words) {
|
||
return BN_copy(r, a) != NULL;
|
||
}
|
||
|
||
// Otherwise, first make sure we have enough space in |r|.
|
||
// Note that this will fail if num_words > INT_MAX.
|
||
if (!bn_wexpand(r, num_words)) {
|
||
return 0;
|
||
}
|
||
|
||
// Copy the content of |a| into |r|.
|
||
OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
|
||
|
||
// If |e| isn't word-aligned, we have to mask off some of our bits.
|
||
size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
|
||
if (top_word_exponent != 0) {
|
||
r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
|
||
}
|
||
|
||
// Fill in the remaining fields of |r|.
|
||
r->neg = a->neg;
|
||
r->top = (int) num_words;
|
||
bn_correct_top(r);
|
||
return 1;
|
||
}
|
||
|
||
int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
|
||
if (!BN_mod_pow2(r, a, e)) {
|
||
return 0;
|
||
}
|
||
|
||
// If the returned value was non-negative, we're done.
|
||
if (BN_is_zero(r) || !r->neg) {
|
||
return 1;
|
||
}
|
||
|
||
size_t num_words = 1 + (e - 1) / BN_BITS2;
|
||
|
||
// Expand |r| to the size of our modulus.
|
||
if (!bn_wexpand(r, num_words)) {
|
||
return 0;
|
||
}
|
||
|
||
// Clear the upper words of |r|.
|
||
OPENSSL_memset(&r->d[r->top], 0, (num_words - r->top) * BN_BYTES);
|
||
|
||
// Set parameters of |r|.
|
||
r->neg = 0;
|
||
r->top = (int) num_words;
|
||
|
||
// Now, invert every word. The idea here is that we want to compute 2^e-|x|,
|
||
// which is actually equivalent to the twos-complement representation of |x|
|
||
// in |e| bits, which is -x = ~x + 1.
|
||
for (int i = 0; i < r->top; i++) {
|
||
r->d[i] = ~r->d[i];
|
||
}
|
||
|
||
// If our exponent doesn't span the top word, we have to mask the rest.
|
||
size_t top_word_exponent = e % BN_BITS2;
|
||
if (top_word_exponent != 0) {
|
||
r->d[r->top - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
|
||
}
|
||
|
||
// Keep the correct_top invariant for BN_add.
|
||
bn_correct_top(r);
|
||
|
||
// Finally, add one, for the reason described above.
|
||
return BN_add(r, r, BN_value_one());
|
||
}
|