boringssl/crypto/evp/evp_test.cc
David Benjamin 19670949ca Align EVP_PKEY Ed25519 API with upstream.
Rather than adding a new mode to EVP_PKEY_CTX, upstream chose to tie
single-shot signing to EVP_MD_CTX, adding functions which combine
EVP_Digest*Update and EVP_Digest*Final. This adds a weird vestigial
EVP_MD_CTX and makes the signing digest parameter non-uniform, slightly
complicating things. But it means APIs like X509_sign_ctx can work
without modification.

Align with upstream's APIs. This required a bit of fiddling around
evp_test.cc. For consistency and to avoid baking details of parameter
input order, I made it eagerly read all inputs before calling
SetupContext. Otherwise which attributes are present depend a lot on the
shape of the API we use---notably the NO_DEFAULT_DIGEST tests for RSA
switch to failing before consuming an input, which is odd.

(This only matters because we have some tests which expect the operation
to abort the operation early with parameter errors and match against
Error. Those probably should not use FileTest to begin with, but I'll
tease that apart a later time.)

Upstream also named NID_Ed25519 as NID_ED25519, even though the
algorithm is normally stylized as "Ed25519". Switch it to match.

Change-Id: Id6c8f5715930038e754de50338924d044e908045
Reviewed-on: https://boringssl-review.googlesource.com/17044
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2017-06-12 12:04:11 +00:00

342 lines
11 KiB
C++

/*
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project.
*/
/* ====================================================================
* Copyright (c) 2015 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#include <openssl/evp.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
OPENSSL_MSVC_PRAGMA(warning(push))
OPENSSL_MSVC_PRAGMA(warning(disable: 4702))
#include <map>
#include <string>
#include <utility>
#include <vector>
OPENSSL_MSVC_PRAGMA(warning(pop))
#include <gtest/gtest.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include "../test/file_test.h"
#include "../test/test_util.h"
// evp_test dispatches between multiple test types. PrivateKey tests take a key
// name parameter and single block, decode it as a PEM private key, and save it
// under that key name. Decrypt, Sign, and Verify tests take a previously
// imported key name as parameter and test their respective operations.
static const EVP_MD *GetDigest(FileTest *t, const std::string &name) {
if (name == "MD5") {
return EVP_md5();
} else if (name == "SHA1") {
return EVP_sha1();
} else if (name == "SHA224") {
return EVP_sha224();
} else if (name == "SHA256") {
return EVP_sha256();
} else if (name == "SHA384") {
return EVP_sha384();
} else if (name == "SHA512") {
return EVP_sha512();
}
ADD_FAILURE() << "Unknown digest: " << name;
return nullptr;
}
static int GetKeyType(FileTest *t, const std::string &name) {
if (name == "RSA") {
return EVP_PKEY_RSA;
}
if (name == "EC") {
return EVP_PKEY_EC;
}
if (name == "DSA") {
return EVP_PKEY_DSA;
}
if (name == "Ed25519") {
return EVP_PKEY_ED25519;
}
ADD_FAILURE() << "Unknown key type: " << name;
return EVP_PKEY_NONE;
}
static int GetRSAPadding(FileTest *t, int *out, const std::string &name) {
if (name == "PKCS1") {
*out = RSA_PKCS1_PADDING;
return true;
}
if (name == "PSS") {
*out = RSA_PKCS1_PSS_PADDING;
return true;
}
if (name == "OAEP") {
*out = RSA_PKCS1_OAEP_PADDING;
return true;
}
ADD_FAILURE() << "Unknown RSA padding mode: " << name;
return false;
}
using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>;
static bool ImportKey(FileTest *t, KeyMap *key_map,
EVP_PKEY *(*parse_func)(CBS *cbs),
int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) {
std::vector<uint8_t> input;
if (!t->GetBytes(&input, "Input")) {
return false;
}
CBS cbs;
CBS_init(&cbs, input.data(), input.size());
bssl::UniquePtr<EVP_PKEY> pkey(parse_func(&cbs));
if (!pkey) {
return false;
}
std::string key_type;
if (!t->GetAttribute(&key_type, "Type")) {
return false;
}
EXPECT_EQ(GetKeyType(t, key_type), EVP_PKEY_id(pkey.get()));
// The key must re-encode correctly.
bssl::ScopedCBB cbb;
uint8_t *der;
size_t der_len;
if (!CBB_init(cbb.get(), 0) ||
!marshal_func(cbb.get(), pkey.get()) ||
!CBB_finish(cbb.get(), &der, &der_len)) {
return false;
}
bssl::UniquePtr<uint8_t> free_der(der);
std::vector<uint8_t> output = input;
if (t->HasAttribute("Output") &&
!t->GetBytes(&output, "Output")) {
return false;
}
EXPECT_EQ(Bytes(output), Bytes(der, der_len)) << "Re-encoding the key did not match.";
// Save the key for future tests.
const std::string &key_name = t->GetParameter();
EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name;
(*key_map)[key_name] = std::move(pkey);
return true;
}
// SetupContext configures |ctx| based on attributes in |t|, with the exception
// of the signing digest which must be configured externally.
static bool SetupContext(FileTest *t, EVP_PKEY_CTX *ctx) {
if (t->HasAttribute("RSAPadding")) {
int padding;
if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) ||
!EVP_PKEY_CTX_set_rsa_padding(ctx, padding)) {
return false;
}
}
if (t->HasAttribute("PSSSaltLength") &&
!EVP_PKEY_CTX_set_rsa_pss_saltlen(
ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) {
return false;
}
if (t->HasAttribute("MGF1Digest")) {
const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest"));
if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) {
return false;
}
}
return true;
}
static bool TestEVP(FileTest *t, KeyMap *key_map) {
if (t->GetType() == "PrivateKey") {
return ImportKey(t, key_map, EVP_parse_private_key,
EVP_marshal_private_key);
}
if (t->GetType() == "PublicKey") {
return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key);
}
int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr;
int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len,
const uint8_t *in, size_t in_len) = nullptr;
int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type,
ENGINE *e, EVP_PKEY *pkey) = nullptr;
bool is_verify = false;
if (t->GetType() == "Decrypt") {
key_op_init = EVP_PKEY_decrypt_init;
key_op = EVP_PKEY_decrypt;
} else if (t->GetType() == "Sign") {
key_op_init = EVP_PKEY_sign_init;
key_op = EVP_PKEY_sign;
} else if (t->GetType() == "Verify") {
key_op_init = EVP_PKEY_verify_init;
is_verify = true;
} else if (t->GetType() == "SignMessage") {
md_op_init = EVP_DigestSignInit;
} else if (t->GetType() == "VerifyMessage") {
md_op_init = EVP_DigestVerifyInit;
is_verify = true;
} else {
ADD_FAILURE() << "Unknown test " << t->GetType();
return false;
}
// Load the key.
const std::string &key_name = t->GetParameter();
if (key_map->count(key_name) == 0) {
ADD_FAILURE() << "Could not find key " << key_name;
return false;
}
EVP_PKEY *key = (*key_map)[key_name].get();
const EVP_MD *digest = nullptr;
if (t->HasAttribute("Digest")) {
digest = GetDigest(t, t->GetAttributeOrDie("Digest"));
if (digest == nullptr) {
return false;
}
}
// For verify tests, the "output" is the signature. Read it now so that, for
// tests which expect a failure in SetupContext, the attribute is still
// consumed.
std::vector<uint8_t> input, actual, output;
if (!t->GetBytes(&input, "Input") ||
(is_verify && !t->GetBytes(&output, "Output"))) {
return false;
}
if (md_op_init) {
bssl::ScopedEVP_MD_CTX ctx;
EVP_PKEY_CTX *pctx;
if (!md_op_init(ctx.get(), &pctx, digest, nullptr, key) ||
!SetupContext(t, pctx)) {
return false;
}
if (is_verify) {
return !!EVP_DigestVerify(ctx.get(), output.data(), output.size(),
input.data(), input.size());
}
size_t len;
if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) {
return false;
}
actual.resize(len);
if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(),
input.size()) ||
!t->GetBytes(&output, "Output")) {
return false;
}
actual.resize(len);
EXPECT_EQ(Bytes(output), Bytes(actual));
return true;
}
bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr));
if (!ctx ||
!key_op_init(ctx.get()) ||
(digest != nullptr &&
!EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) ||
!SetupContext(t, ctx.get())) {
return false;
}
if (is_verify) {
return !!EVP_PKEY_verify(ctx.get(), output.data(), output.size(),
input.data(), input.size());
}
size_t len;
if (!key_op(ctx.get(), nullptr, &len, input.data(), input.size())) {
return false;
}
actual.resize(len);
if (!key_op(ctx.get(), actual.data(), &len, input.data(), input.size()) ||
!t->GetBytes(&output, "Output")) {
return false;
}
actual.resize(len);
EXPECT_EQ(Bytes(output), Bytes(actual));
return true;
}
TEST(EVPTest, TestVectors) {
KeyMap key_map;
FileTestGTest("crypto/evp/evp_tests.txt", [&](FileTest *t) {
bool result = TestEVP(t, &key_map);
if (t->HasAttribute("Error")) {
ASSERT_FALSE(result) << "Operation unexpectedly succeeded.";
uint32_t err = ERR_peek_error();
EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err));
} else if (!result) {
ADD_FAILURE() << "Operation unexpectedly failed.";
ERR_print_errors_fp(stdout);
}
});
}