17727c6843
All the signature algorithm logic depends on X509_ALGOR. This also removes the X509_ALGOR-based EVP functions which are no longer used externally. I think those APIs were a mistake on my part. The use in Chromium was unnecessary (and has since been removed anyway). The new X.509 stack will want to process the signatureAlgorithm itself to be able to enforce policies on it. This also moves the RSA_PSS_PARAMS bits to crypto/x509 from crypto/rsa. That struct is also tied to crypto/x509. Any new RSA-PSS code would have to use something else anyway. BUG=499653 Change-Id: I6c4b4573b2800a2e0f863d35df94d048864b7c41 Reviewed-on: https://boringssl-review.googlesource.com/7025 Reviewed-by: Adam Langley <agl@google.com>
709 lines
18 KiB
C
709 lines
18 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 2005.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/rsa.h>
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/sha.h>
|
|
|
|
#include "internal.h"
|
|
#include "../internal.h"
|
|
|
|
/* TODO(fork): don't the check functions have to be constant time? */
|
|
|
|
int RSA_padding_add_PKCS1_type_1(uint8_t *to, unsigned to_len,
|
|
const uint8_t *from, unsigned from_len) {
|
|
unsigned j;
|
|
uint8_t *p;
|
|
|
|
if (to_len < RSA_PKCS1_PADDING_SIZE) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
p = (uint8_t *)to;
|
|
|
|
*(p++) = 0;
|
|
*(p++) = 1; /* Private Key BT (Block Type) */
|
|
|
|
/* pad out with 0xff data */
|
|
j = to_len - 3 - from_len;
|
|
memset(p, 0xff, j);
|
|
p += j;
|
|
*(p++) = 0;
|
|
memcpy(p, from, from_len);
|
|
return 1;
|
|
}
|
|
|
|
int RSA_padding_check_PKCS1_type_1(uint8_t *to, unsigned to_len,
|
|
const uint8_t *from, unsigned from_len) {
|
|
unsigned i, j;
|
|
const uint8_t *p;
|
|
|
|
if (from_len < 2) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL);
|
|
return -1;
|
|
}
|
|
|
|
p = from;
|
|
if ((*(p++) != 0) || (*(p++) != 1)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BLOCK_TYPE_IS_NOT_01);
|
|
return -1;
|
|
}
|
|
|
|
/* scan over padding data */
|
|
j = from_len - 2; /* one for leading 00, one for type. */
|
|
for (i = 0; i < j; i++) {
|
|
/* should decrypt to 0xff */
|
|
if (*p != 0xff) {
|
|
if (*p == 0) {
|
|
p++;
|
|
break;
|
|
} else {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT);
|
|
return -1;
|
|
}
|
|
}
|
|
p++;
|
|
}
|
|
|
|
if (i == j) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING);
|
|
return -1;
|
|
}
|
|
|
|
if (i < 8) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_PAD_BYTE_COUNT);
|
|
return -1;
|
|
}
|
|
i++; /* Skip over the '\0' */
|
|
j -= i;
|
|
if (j > to_len) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
|
return -1;
|
|
}
|
|
memcpy(to, p, j);
|
|
|
|
return j;
|
|
}
|
|
|
|
int RSA_padding_add_PKCS1_type_2(uint8_t *to, unsigned to_len,
|
|
const uint8_t *from, unsigned from_len) {
|
|
unsigned i, j;
|
|
uint8_t *p;
|
|
|
|
if (to_len < RSA_PKCS1_PADDING_SIZE) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
p = (unsigned char *)to;
|
|
|
|
*(p++) = 0;
|
|
*(p++) = 2; /* Public Key BT (Block Type) */
|
|
|
|
/* pad out with non-zero random data */
|
|
j = to_len - 3 - from_len;
|
|
|
|
if (!RAND_bytes(p, j)) {
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < j; i++) {
|
|
while (*p == 0) {
|
|
if (!RAND_bytes(p, 1)) {
|
|
return 0;
|
|
}
|
|
}
|
|
p++;
|
|
}
|
|
|
|
*(p++) = 0;
|
|
|
|
memcpy(p, from, from_len);
|
|
return 1;
|
|
}
|
|
|
|
int RSA_padding_check_PKCS1_type_2(uint8_t *to, unsigned to_len,
|
|
const uint8_t *from, unsigned from_len) {
|
|
if (from_len == 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY);
|
|
return -1;
|
|
}
|
|
|
|
/* PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography
|
|
* Standard", section 7.2.2. */
|
|
if (from_len < RSA_PKCS1_PADDING_SIZE) {
|
|
/* |from| is zero-padded to the size of the RSA modulus, a public value, so
|
|
* this can be rejected in non-constant time. */
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
|
return -1;
|
|
}
|
|
|
|
unsigned first_byte_is_zero = constant_time_eq(from[0], 0);
|
|
unsigned second_byte_is_two = constant_time_eq(from[1], 2);
|
|
|
|
unsigned i, zero_index = 0, looking_for_index = ~0u;
|
|
for (i = 2; i < from_len; i++) {
|
|
unsigned equals0 = constant_time_is_zero(from[i]);
|
|
zero_index = constant_time_select(looking_for_index & equals0, (unsigned)i,
|
|
zero_index);
|
|
looking_for_index = constant_time_select(equals0, 0, looking_for_index);
|
|
}
|
|
|
|
/* The input must begin with 00 02. */
|
|
unsigned valid_index = first_byte_is_zero;
|
|
valid_index &= second_byte_is_two;
|
|
|
|
/* We must have found the end of PS. */
|
|
valid_index &= ~looking_for_index;
|
|
|
|
/* PS must be at least 8 bytes long, and it starts two bytes into |from|. */
|
|
valid_index &= constant_time_ge(zero_index, 2 + 8);
|
|
|
|
/* Skip the zero byte. */
|
|
zero_index++;
|
|
|
|
/* NOTE: Although this logic attempts to be constant time, the API contracts
|
|
* of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it
|
|
* impossible to completely avoid Bleichenbacher's attack. Consumers should
|
|
* use |RSA_unpad_key_pkcs1|. */
|
|
if (!valid_index) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
const unsigned msg_len = from_len - zero_index;
|
|
if (msg_len > to_len) {
|
|
/* This shouldn't happen because this function is always called with
|
|
* |to_len| as the key size and |from_len| is bounded by the key size. */
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
if (msg_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
|
|
memcpy(to, &from[zero_index], msg_len);
|
|
return (int)msg_len;
|
|
}
|
|
|
|
int RSA_padding_add_none(uint8_t *to, unsigned to_len, const uint8_t *from,
|
|
unsigned from_len) {
|
|
if (from_len > to_len) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
if (from_len < to_len) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
memcpy(to, from, from_len);
|
|
return 1;
|
|
}
|
|
|
|
int PKCS1_MGF1(uint8_t *mask, unsigned len, const uint8_t *seed,
|
|
unsigned seedlen, const EVP_MD *dgst) {
|
|
unsigned outlen = 0;
|
|
uint32_t i;
|
|
uint8_t cnt[4];
|
|
EVP_MD_CTX c;
|
|
uint8_t md[EVP_MAX_MD_SIZE];
|
|
unsigned mdlen;
|
|
int ret = -1;
|
|
|
|
EVP_MD_CTX_init(&c);
|
|
mdlen = EVP_MD_size(dgst);
|
|
|
|
for (i = 0; outlen < len; i++) {
|
|
cnt[0] = (uint8_t)((i >> 24) & 255);
|
|
cnt[1] = (uint8_t)((i >> 16) & 255);
|
|
cnt[2] = (uint8_t)((i >> 8)) & 255;
|
|
cnt[3] = (uint8_t)(i & 255);
|
|
if (!EVP_DigestInit_ex(&c, dgst, NULL) ||
|
|
!EVP_DigestUpdate(&c, seed, seedlen) ||
|
|
!EVP_DigestUpdate(&c, cnt, 4)) {
|
|
goto err;
|
|
}
|
|
|
|
if (outlen + mdlen <= len) {
|
|
if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL)) {
|
|
goto err;
|
|
}
|
|
outlen += mdlen;
|
|
} else {
|
|
if (!EVP_DigestFinal_ex(&c, md, NULL)) {
|
|
goto err;
|
|
}
|
|
memcpy(mask + outlen, md, len - outlen);
|
|
outlen = len;
|
|
}
|
|
}
|
|
ret = 0;
|
|
|
|
err:
|
|
EVP_MD_CTX_cleanup(&c);
|
|
return ret;
|
|
}
|
|
|
|
int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, unsigned to_len,
|
|
const uint8_t *from, unsigned from_len,
|
|
const uint8_t *param, unsigned param_len,
|
|
const EVP_MD *md, const EVP_MD *mgf1md) {
|
|
unsigned i, emlen, mdlen;
|
|
uint8_t *db, *seed;
|
|
uint8_t *dbmask = NULL, seedmask[EVP_MAX_MD_SIZE];
|
|
int ret = 0;
|
|
|
|
if (md == NULL) {
|
|
md = EVP_sha1();
|
|
}
|
|
if (mgf1md == NULL) {
|
|
mgf1md = md;
|
|
}
|
|
|
|
mdlen = EVP_MD_size(md);
|
|
|
|
if (to_len < 2 * mdlen + 2) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
emlen = to_len - 1;
|
|
if (from_len > emlen - 2 * mdlen - 1) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
if (emlen < 2 * mdlen + 1) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
to[0] = 0;
|
|
seed = to + 1;
|
|
db = to + mdlen + 1;
|
|
|
|
if (!EVP_Digest((void *)param, param_len, db, NULL, md, NULL)) {
|
|
return 0;
|
|
}
|
|
memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1);
|
|
db[emlen - from_len - mdlen - 1] = 0x01;
|
|
memcpy(db + emlen - from_len - mdlen, from, from_len);
|
|
if (!RAND_bytes(seed, mdlen)) {
|
|
return 0;
|
|
}
|
|
|
|
dbmask = OPENSSL_malloc(emlen - mdlen);
|
|
if (dbmask == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
if (PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md) < 0) {
|
|
goto out;
|
|
}
|
|
for (i = 0; i < emlen - mdlen; i++) {
|
|
db[i] ^= dbmask[i];
|
|
}
|
|
|
|
if (PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md) < 0) {
|
|
goto out;
|
|
}
|
|
for (i = 0; i < mdlen; i++) {
|
|
seed[i] ^= seedmask[i];
|
|
}
|
|
ret = 1;
|
|
|
|
out:
|
|
OPENSSL_free(dbmask);
|
|
return ret;
|
|
}
|
|
|
|
int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *to, unsigned to_len,
|
|
const uint8_t *from, unsigned from_len,
|
|
const uint8_t *param, unsigned param_len,
|
|
const EVP_MD *md, const EVP_MD *mgf1md) {
|
|
unsigned i, dblen, mlen = -1, mdlen, bad, looking_for_one_byte, one_index = 0;
|
|
const uint8_t *maskeddb, *maskedseed;
|
|
uint8_t *db = NULL, seed[EVP_MAX_MD_SIZE], phash[EVP_MAX_MD_SIZE];
|
|
|
|
if (md == NULL) {
|
|
md = EVP_sha1();
|
|
}
|
|
if (mgf1md == NULL) {
|
|
mgf1md = md;
|
|
}
|
|
|
|
mdlen = EVP_MD_size(md);
|
|
|
|
/* The encoded message is one byte smaller than the modulus to ensure that it
|
|
* doesn't end up greater than the modulus. Thus there's an extra "+1" here
|
|
* compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. */
|
|
if (from_len < 1 + 2*mdlen + 1) {
|
|
/* 'from_len' is the length of the modulus, i.e. does not depend on the
|
|
* particular ciphertext. */
|
|
goto decoding_err;
|
|
}
|
|
|
|
dblen = from_len - mdlen - 1;
|
|
db = OPENSSL_malloc(dblen);
|
|
if (db == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
maskedseed = from + 1;
|
|
maskeddb = from + 1 + mdlen;
|
|
|
|
if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) {
|
|
goto err;
|
|
}
|
|
for (i = 0; i < mdlen; i++) {
|
|
seed[i] ^= maskedseed[i];
|
|
}
|
|
|
|
if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) {
|
|
goto err;
|
|
}
|
|
for (i = 0; i < dblen; i++) {
|
|
db[i] ^= maskeddb[i];
|
|
}
|
|
|
|
if (!EVP_Digest((void *)param, param_len, phash, NULL, md, NULL)) {
|
|
goto err;
|
|
}
|
|
|
|
bad = ~constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
|
|
bad |= ~constant_time_is_zero(from[0]);
|
|
|
|
looking_for_one_byte = ~0u;
|
|
for (i = mdlen; i < dblen; i++) {
|
|
unsigned equals1 = constant_time_eq(db[i], 1);
|
|
unsigned equals0 = constant_time_eq(db[i], 0);
|
|
one_index = constant_time_select(looking_for_one_byte & equals1, i,
|
|
one_index);
|
|
looking_for_one_byte =
|
|
constant_time_select(equals1, 0, looking_for_one_byte);
|
|
bad |= looking_for_one_byte & ~equals0;
|
|
}
|
|
|
|
bad |= looking_for_one_byte;
|
|
|
|
if (bad) {
|
|
goto decoding_err;
|
|
}
|
|
|
|
one_index++;
|
|
mlen = dblen - one_index;
|
|
if (to_len < mlen) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
|
mlen = -1;
|
|
} else {
|
|
memcpy(to, db + one_index, mlen);
|
|
}
|
|
|
|
OPENSSL_free(db);
|
|
return mlen;
|
|
|
|
decoding_err:
|
|
/* to avoid chosen ciphertext attacks, the error message should not reveal
|
|
* which kind of decoding error happened */
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR);
|
|
err:
|
|
OPENSSL_free(db);
|
|
return -1;
|
|
}
|
|
|
|
static const unsigned char zeroes[] = {0,0,0,0,0,0,0,0};
|
|
|
|
int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const uint8_t *mHash,
|
|
const EVP_MD *Hash, const EVP_MD *mgf1Hash,
|
|
const uint8_t *EM, int sLen) {
|
|
int i;
|
|
int ret = 0;
|
|
int maskedDBLen, MSBits, emLen;
|
|
size_t hLen;
|
|
const uint8_t *H;
|
|
uint8_t *DB = NULL;
|
|
EVP_MD_CTX ctx;
|
|
uint8_t H_[EVP_MAX_MD_SIZE];
|
|
EVP_MD_CTX_init(&ctx);
|
|
|
|
if (mgf1Hash == NULL) {
|
|
mgf1Hash = Hash;
|
|
}
|
|
|
|
hLen = EVP_MD_size(Hash);
|
|
|
|
/* Negative sLen has special meanings:
|
|
* -1 sLen == hLen
|
|
* -2 salt length is autorecovered from signature
|
|
* -N reserved */
|
|
if (sLen == -1) {
|
|
sLen = hLen;
|
|
} else if (sLen == -2) {
|
|
sLen = -2;
|
|
} else if (sLen < -2) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
MSBits = (BN_num_bits(rsa->n) - 1) & 0x7;
|
|
emLen = RSA_size(rsa);
|
|
if (EM[0] & (0xFF << MSBits)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_FIRST_OCTET_INVALID);
|
|
goto err;
|
|
}
|
|
if (MSBits == 0) {
|
|
EM++;
|
|
emLen--;
|
|
}
|
|
if (emLen < ((int)hLen + sLen + 2)) {
|
|
/* sLen can be small negative */
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
|
goto err;
|
|
}
|
|
if (EM[emLen - 1] != 0xbc) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_LAST_OCTET_INVALID);
|
|
goto err;
|
|
}
|
|
maskedDBLen = emLen - hLen - 1;
|
|
H = EM + maskedDBLen;
|
|
DB = OPENSSL_malloc(maskedDBLen);
|
|
if (!DB) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
if (PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash) < 0) {
|
|
goto err;
|
|
}
|
|
for (i = 0; i < maskedDBLen; i++) {
|
|
DB[i] ^= EM[i];
|
|
}
|
|
if (MSBits) {
|
|
DB[0] &= 0xFF >> (8 - MSBits);
|
|
}
|
|
for (i = 0; DB[i] == 0 && i < (maskedDBLen - 1); i++) {
|
|
;
|
|
}
|
|
if (DB[i++] != 0x1) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_RECOVERY_FAILED);
|
|
goto err;
|
|
}
|
|
if (sLen >= 0 && (maskedDBLen - i) != sLen) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED);
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestInit_ex(&ctx, Hash, NULL) ||
|
|
!EVP_DigestUpdate(&ctx, zeroes, sizeof zeroes) ||
|
|
!EVP_DigestUpdate(&ctx, mHash, hLen)) {
|
|
goto err;
|
|
}
|
|
if (maskedDBLen - i) {
|
|
if (!EVP_DigestUpdate(&ctx, DB + i, maskedDBLen - i)) {
|
|
goto err;
|
|
}
|
|
}
|
|
if (!EVP_DigestFinal_ex(&ctx, H_, NULL)) {
|
|
goto err;
|
|
}
|
|
if (memcmp(H_, H, hLen)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE);
|
|
ret = 0;
|
|
} else {
|
|
ret = 1;
|
|
}
|
|
|
|
err:
|
|
OPENSSL_free(DB);
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, unsigned char *EM,
|
|
const unsigned char *mHash,
|
|
const EVP_MD *Hash, const EVP_MD *mgf1Hash,
|
|
int sLen) {
|
|
int i;
|
|
int ret = 0;
|
|
size_t maskedDBLen, MSBits, emLen;
|
|
size_t hLen;
|
|
unsigned char *H, *salt = NULL, *p;
|
|
EVP_MD_CTX ctx;
|
|
|
|
if (mgf1Hash == NULL) {
|
|
mgf1Hash = Hash;
|
|
}
|
|
|
|
hLen = EVP_MD_size(Hash);
|
|
|
|
/* Negative sLen has special meanings:
|
|
* -1 sLen == hLen
|
|
* -2 salt length is maximized
|
|
* -N reserved */
|
|
if (sLen == -1) {
|
|
sLen = hLen;
|
|
} else if (sLen == -2) {
|
|
sLen = -2;
|
|
} else if (sLen < -2) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
if (BN_is_zero(rsa->n)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY);
|
|
goto err;
|
|
}
|
|
|
|
MSBits = (BN_num_bits(rsa->n) - 1) & 0x7;
|
|
emLen = RSA_size(rsa);
|
|
if (MSBits == 0) {
|
|
assert(emLen >= 1);
|
|
*EM++ = 0;
|
|
emLen--;
|
|
}
|
|
if (sLen == -2) {
|
|
if (emLen < hLen + 2) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
|
goto err;
|
|
}
|
|
sLen = emLen - hLen - 2;
|
|
} else if (emLen < hLen + sLen + 2) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
|
goto err;
|
|
}
|
|
if (sLen > 0) {
|
|
salt = OPENSSL_malloc(sLen);
|
|
if (!salt) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
if (!RAND_bytes(salt, sLen)) {
|
|
goto err;
|
|
}
|
|
}
|
|
maskedDBLen = emLen - hLen - 1;
|
|
H = EM + maskedDBLen;
|
|
EVP_MD_CTX_init(&ctx);
|
|
if (!EVP_DigestInit_ex(&ctx, Hash, NULL) ||
|
|
!EVP_DigestUpdate(&ctx, zeroes, sizeof zeroes) ||
|
|
!EVP_DigestUpdate(&ctx, mHash, hLen)) {
|
|
goto err;
|
|
}
|
|
if (sLen && !EVP_DigestUpdate(&ctx, salt, sLen)) {
|
|
goto err;
|
|
}
|
|
if (!EVP_DigestFinal_ex(&ctx, H, NULL)) {
|
|
goto err;
|
|
}
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
|
|
/* Generate dbMask in place then perform XOR on it */
|
|
if (PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) {
|
|
goto err;
|
|
}
|
|
|
|
p = EM;
|
|
|
|
/* Initial PS XORs with all zeroes which is a NOP so just update
|
|
* pointer. Note from a test above this value is guaranteed to
|
|
* be non-negative. */
|
|
p += emLen - sLen - hLen - 2;
|
|
*p++ ^= 0x1;
|
|
if (sLen > 0) {
|
|
for (i = 0; i < sLen; i++) {
|
|
*p++ ^= salt[i];
|
|
}
|
|
}
|
|
if (MSBits) {
|
|
EM[0] &= 0xFF >> (8 - MSBits);
|
|
}
|
|
|
|
/* H is already in place so just set final 0xbc */
|
|
|
|
EM[emLen - 1] = 0xbc;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_free(salt);
|
|
|
|
return ret;
|
|
}
|