d851842228
To remove the OID table from Chromium, we'll need to decouple a lot of this code. In preparation for that, detach the easy cases from the OID table. What remains is PBES, cipher, and digest OIDs which will be doing in follow-up changes. BUG=54 Change-Id: Ie205d23d042e21114ca1faf68917fdc870969d09 Reviewed-on: https://boringssl-review.googlesource.com/14209 Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
1248 lines
36 KiB
C
1248 lines
36 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 1999.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/pkcs8.h>
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/buf.h>
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/cipher.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/x509.h>
|
|
|
|
#include "internal.h"
|
|
#include "../internal.h"
|
|
#include "../bytestring/internal.h"
|
|
|
|
|
|
#define PKCS12_KEY_ID 1
|
|
#define PKCS12_IV_ID 2
|
|
#define PKCS12_MAC_ID 3
|
|
|
|
static int ascii_to_ucs2(const char *ascii, size_t ascii_len,
|
|
uint8_t **out, size_t *out_len) {
|
|
size_t ulen = ascii_len * 2 + 2;
|
|
if (ascii_len * 2 < ascii_len || ulen < ascii_len * 2) {
|
|
return 0;
|
|
}
|
|
|
|
uint8_t *unitmp = OPENSSL_malloc(ulen);
|
|
if (unitmp == NULL) {
|
|
return 0;
|
|
}
|
|
for (size_t i = 0; i < ulen - 2; i += 2) {
|
|
unitmp[i] = 0;
|
|
unitmp[i + 1] = ascii[i >> 1];
|
|
}
|
|
|
|
/* Terminate the result with a UCS-2 NUL. */
|
|
unitmp[ulen - 2] = 0;
|
|
unitmp[ulen - 1] = 0;
|
|
*out_len = ulen;
|
|
*out = unitmp;
|
|
return 1;
|
|
}
|
|
|
|
static int pkcs12_key_gen_raw(const uint8_t *pass_raw, size_t pass_raw_len,
|
|
const uint8_t *salt, size_t salt_len,
|
|
uint8_t id, unsigned iterations,
|
|
size_t out_len, uint8_t *out,
|
|
const EVP_MD *md) {
|
|
/* See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the
|
|
* specification have errata applied and other typos fixed. */
|
|
|
|
if (iterations < 1) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
|
|
return 0;
|
|
}
|
|
|
|
/* In the spec, |block_size| is called "v", but measured in bits. */
|
|
size_t block_size = EVP_MD_block_size(md);
|
|
|
|
/* 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies
|
|
* of ID. */
|
|
uint8_t D[EVP_MAX_MD_BLOCK_SIZE];
|
|
OPENSSL_memset(D, id, block_size);
|
|
|
|
/* 2. Concatenate copies of the salt together to create a string S of length
|
|
* v(ceiling(s/v)) bits (the final copy of the salt may be truncated to
|
|
* create S). Note that if the salt is the empty string, then so is S.
|
|
*
|
|
* 3. Concatenate copies of the password together to create a string P of
|
|
* length v(ceiling(p/v)) bits (the final copy of the password may be
|
|
* truncated to create P). Note that if the password is the empty string,
|
|
* then so is P.
|
|
*
|
|
* 4. Set I=S||P to be the concatenation of S and P. */
|
|
if (salt_len + block_size - 1 < salt_len ||
|
|
pass_raw_len + block_size - 1 < pass_raw_len) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
|
|
return 0;
|
|
}
|
|
size_t S_len = block_size * ((salt_len + block_size - 1) / block_size);
|
|
size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size);
|
|
size_t I_len = S_len + P_len;
|
|
if (I_len < S_len) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
|
|
return 0;
|
|
}
|
|
|
|
uint8_t *I = OPENSSL_malloc(I_len);
|
|
if (I_len != 0 && I == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
for (size_t i = 0; i < S_len; i++) {
|
|
I[i] = salt[i % salt_len];
|
|
}
|
|
for (size_t i = 0; i < P_len; i++) {
|
|
I[i + S_len] = pass_raw[i % pass_raw_len];
|
|
}
|
|
|
|
int ret = 0;
|
|
EVP_MD_CTX ctx;
|
|
EVP_MD_CTX_init(&ctx);
|
|
|
|
while (out_len != 0) {
|
|
/* A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I,
|
|
* H(H(H(... H(D||I)))) */
|
|
uint8_t A[EVP_MAX_MD_SIZE];
|
|
unsigned A_len;
|
|
if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
|
|
!EVP_DigestUpdate(&ctx, D, block_size) ||
|
|
!EVP_DigestUpdate(&ctx, I, I_len) ||
|
|
!EVP_DigestFinal_ex(&ctx, A, &A_len)) {
|
|
goto err;
|
|
}
|
|
for (unsigned iter = 1; iter < iterations; iter++) {
|
|
if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
|
|
!EVP_DigestUpdate(&ctx, A, A_len) ||
|
|
!EVP_DigestFinal_ex(&ctx, A, &A_len)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
size_t todo = out_len < A_len ? out_len : A_len;
|
|
OPENSSL_memcpy(out, A, todo);
|
|
out += todo;
|
|
out_len -= todo;
|
|
if (out_len == 0) {
|
|
break;
|
|
}
|
|
|
|
/* B. Concatenate copies of A_i to create a string B of length v bits (the
|
|
* final copy of A_i may be truncated to create B). */
|
|
uint8_t B[EVP_MAX_MD_BLOCK_SIZE];
|
|
for (size_t i = 0; i < block_size; i++) {
|
|
B[i] = A[i % A_len];
|
|
}
|
|
|
|
/* C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks,
|
|
* where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod
|
|
* 2^v for each j. */
|
|
assert(I_len % block_size == 0);
|
|
for (size_t i = 0; i < I_len; i += block_size) {
|
|
unsigned carry = 1;
|
|
for (size_t j = block_size - 1; j < block_size; j--) {
|
|
carry += I[i + j] + B[j];
|
|
I[i + j] = (uint8_t)carry;
|
|
carry >>= 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_cleanse(I, I_len);
|
|
OPENSSL_free(I);
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite,
|
|
EVP_CIPHER_CTX *ctx, unsigned iterations,
|
|
const uint8_t *pass_raw, size_t pass_raw_len,
|
|
const uint8_t *salt, size_t salt_len,
|
|
int is_encrypt) {
|
|
const EVP_CIPHER *cipher = suite->cipher_func();
|
|
const EVP_MD *md = suite->md_func();
|
|
|
|
uint8_t key[EVP_MAX_KEY_LENGTH];
|
|
if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt,
|
|
salt_len, PKCS12_KEY_ID, iterations,
|
|
EVP_CIPHER_key_length(cipher), key, md)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
uint8_t iv[EVP_MAX_IV_LENGTH];
|
|
if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt,
|
|
salt_len, PKCS12_IV_ID, iterations,
|
|
EVP_CIPHER_iv_length(cipher), iv, md)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt);
|
|
OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
|
|
OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
|
|
return ret;
|
|
}
|
|
|
|
static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite,
|
|
EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw,
|
|
size_t pass_raw_len, CBS *param) {
|
|
CBS pbe_param, salt;
|
|
uint64_t iterations;
|
|
if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) ||
|
|
!CBS_get_asn1_uint64(&pbe_param, &iterations) ||
|
|
CBS_len(&pbe_param) != 0 ||
|
|
CBS_len(param) != 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (iterations == 0 || iterations > UINT_MAX) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
|
|
return 0;
|
|
}
|
|
|
|
return pkcs12_pbe_cipher_init(suite, ctx, (unsigned)iterations, pass_raw,
|
|
pass_raw_len, CBS_data(&salt), CBS_len(&salt),
|
|
0 /* decrypt */);
|
|
}
|
|
|
|
static const struct pbe_suite kBuiltinPBE[] = {
|
|
{
|
|
NID_pbe_WithSHA1And40BitRC2_CBC, EVP_rc2_40_cbc, EVP_sha1,
|
|
pkcs12_pbe_decrypt_init, PBE_UCS2_CONVERT_PASSWORD,
|
|
},
|
|
{
|
|
NID_pbe_WithSHA1And128BitRC4, EVP_rc4, EVP_sha1,
|
|
pkcs12_pbe_decrypt_init, PBE_UCS2_CONVERT_PASSWORD,
|
|
},
|
|
{
|
|
NID_pbe_WithSHA1And3_Key_TripleDES_CBC, EVP_des_ede3_cbc, EVP_sha1,
|
|
pkcs12_pbe_decrypt_init, PBE_UCS2_CONVERT_PASSWORD,
|
|
},
|
|
{
|
|
NID_pbes2, NULL, NULL, PKCS5_pbe2_decrypt_init, 0,
|
|
},
|
|
};
|
|
|
|
static const struct pbe_suite *get_pbe_suite(int pbe_nid) {
|
|
unsigned i;
|
|
for (i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
|
|
if (kBuiltinPBE[i].pbe_nid == pbe_nid) {
|
|
return &kBuiltinPBE[i];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* pass_to_pass_raw performs a password conversion (possibly a no-op)
|
|
* appropriate to the supplied |pbe_nid|. The input |pass| is treated as a
|
|
* NUL-terminated string if |pass_len| is -1, otherwise it is treated as a
|
|
* buffer of the specified length. If the supplied PBE NID sets the
|
|
* |PBE_UCS2_CONVERT_PASSWORD| flag, the supplied |pass| will be converted to
|
|
* UCS-2.
|
|
*
|
|
* It sets |*out_pass_raw| to a new buffer that must be freed by the caller. It
|
|
* returns one on success and zero on error. */
|
|
static int pass_to_pass_raw(int pbe_nid, const char *pass, int pass_len,
|
|
uint8_t **out_pass_raw, size_t *out_pass_raw_len) {
|
|
if (pass == NULL) {
|
|
*out_pass_raw = NULL;
|
|
*out_pass_raw_len = 0;
|
|
return 1;
|
|
}
|
|
|
|
if (pass_len == -1) {
|
|
pass_len = strlen(pass);
|
|
} else if (pass_len < 0 || pass_len > 2000000000) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
|
|
return 0;
|
|
}
|
|
|
|
const struct pbe_suite *suite = get_pbe_suite(pbe_nid);
|
|
if (suite != NULL && (suite->flags & PBE_UCS2_CONVERT_PASSWORD)) {
|
|
if (!ascii_to_ucs2(pass, pass_len, out_pass_raw, out_pass_raw_len)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
} else {
|
|
*out_pass_raw = BUF_memdup(pass, pass_len);
|
|
if (*out_pass_raw == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
*out_pass_raw_len = (size_t)pass_len;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg,
|
|
unsigned iterations, const uint8_t *pass_raw,
|
|
size_t pass_raw_len, const uint8_t *salt,
|
|
size_t salt_len) {
|
|
const struct pbe_suite *suite = get_pbe_suite(alg);
|
|
if (suite == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
|
|
return 0;
|
|
}
|
|
|
|
/* See RFC 2898, appendix A.3. */
|
|
CBB algorithm, param, salt_cbb;
|
|
if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
|
|
!OBJ_nid2cbb(&algorithm, alg) ||
|
|
!CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) ||
|
|
!CBB_add_asn1(¶m, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
|
|
!CBB_add_bytes(&salt_cbb, salt, salt_len) ||
|
|
!CBB_add_asn1_uint64(¶m, iterations) ||
|
|
!CBB_flush(out)) {
|
|
return 0;
|
|
}
|
|
|
|
return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass_raw, pass_raw_len,
|
|
salt, salt_len, 1 /* encrypt */);
|
|
}
|
|
|
|
static int pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm,
|
|
const uint8_t *pass_raw, size_t pass_raw_len,
|
|
const uint8_t *in, size_t in_len) {
|
|
int ret = 0;
|
|
uint8_t *buf = NULL;;
|
|
EVP_CIPHER_CTX ctx;
|
|
EVP_CIPHER_CTX_init(&ctx);
|
|
|
|
CBS obj;
|
|
if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
const struct pbe_suite *suite = get_pbe_suite(OBJ_cbs2nid(&obj));
|
|
if (suite == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
|
|
goto err;
|
|
}
|
|
|
|
if (!suite->decrypt_init(suite, &ctx, pass_raw, pass_raw_len, algorithm)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
buf = OPENSSL_malloc(in_len);
|
|
if (buf == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
if (in_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
|
|
goto err;
|
|
}
|
|
|
|
int n1, n2;
|
|
if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) ||
|
|
!EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) {
|
|
goto err;
|
|
}
|
|
|
|
*out = buf;
|
|
*out_len = n1 + n2;
|
|
ret = 1;
|
|
buf = NULL;
|
|
|
|
err:
|
|
OPENSSL_free(buf);
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return ret;
|
|
}
|
|
|
|
static PKCS8_PRIV_KEY_INFO *pkcs8_decrypt_raw(X509_SIG *pkcs8,
|
|
const uint8_t *pass_raw,
|
|
size_t pass_raw_len) {
|
|
PKCS8_PRIV_KEY_INFO *ret = NULL;
|
|
uint8_t *in = NULL, *out = NULL;
|
|
size_t out_len = 0;
|
|
|
|
/* Convert the legacy ASN.1 object to a byte string. */
|
|
int in_len = i2d_X509_SIG(pkcs8, &in);
|
|
if (in_len < 0) {
|
|
goto err;
|
|
}
|
|
|
|
/* See RFC 5208, section 6. */
|
|
CBS cbs, epki, algorithm, ciphertext;
|
|
CBS_init(&cbs, in, in_len);
|
|
if (!CBS_get_asn1(&cbs, &epki, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
|
|
CBS_len(&epki) != 0 ||
|
|
CBS_len(&cbs) != 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (!pbe_decrypt(&out, &out_len, &algorithm, pass_raw, pass_raw_len,
|
|
CBS_data(&ciphertext), CBS_len(&ciphertext))) {
|
|
goto err;
|
|
}
|
|
|
|
if (out_len > LONG_MAX) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
/* Convert back to legacy ASN.1 objects. */
|
|
const uint8_t *ptr = out;
|
|
ret = d2i_PKCS8_PRIV_KEY_INFO(NULL, &ptr, (long)out_len);
|
|
OPENSSL_cleanse(out, out_len);
|
|
if (ret == NULL || ptr != out + out_len) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
PKCS8_PRIV_KEY_INFO_free(ret);
|
|
ret = NULL;
|
|
}
|
|
|
|
err:
|
|
OPENSSL_free(in);
|
|
OPENSSL_cleanse(out, out_len);
|
|
OPENSSL_free(out);
|
|
return ret;
|
|
}
|
|
|
|
PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
|
|
int pass_len) {
|
|
uint8_t *pass_raw = NULL;
|
|
size_t pass_raw_len = 0;
|
|
if (!pass_to_pass_raw(OBJ_obj2nid(pkcs8->algor->algorithm), pass, pass_len,
|
|
&pass_raw, &pass_raw_len)) {
|
|
return NULL;
|
|
}
|
|
|
|
PKCS8_PRIV_KEY_INFO *ret = pkcs8_decrypt_raw(pkcs8, pass_raw, pass_raw_len);
|
|
|
|
if (pass_raw) {
|
|
OPENSSL_cleanse(pass_raw, pass_raw_len);
|
|
OPENSSL_free(pass_raw);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static X509_SIG *pkcs8_encrypt_raw(int pbe_nid, const EVP_CIPHER *cipher,
|
|
const uint8_t *pass_raw, size_t pass_raw_len,
|
|
const uint8_t *salt, size_t salt_len,
|
|
int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
|
|
X509_SIG *ret = NULL;
|
|
uint8_t *plaintext = NULL, *salt_buf = NULL, *der = NULL;
|
|
int plaintext_len = -1;
|
|
size_t der_len;
|
|
CBB cbb;
|
|
CBB_zero(&cbb);
|
|
EVP_CIPHER_CTX ctx;
|
|
EVP_CIPHER_CTX_init(&ctx);
|
|
|
|
/* Generate a random salt if necessary. */
|
|
if (salt == NULL) {
|
|
if (salt_len == 0) {
|
|
salt_len = PKCS5_SALT_LEN;
|
|
}
|
|
|
|
salt_buf = OPENSSL_malloc(salt_len);
|
|
if (salt_buf == NULL ||
|
|
!RAND_bytes(salt_buf, salt_len)) {
|
|
goto err;
|
|
}
|
|
|
|
salt = salt_buf;
|
|
}
|
|
|
|
if (iterations <= 0) {
|
|
iterations = PKCS5_DEFAULT_ITERATIONS;
|
|
}
|
|
|
|
/* Convert the input from the legacy ASN.1 format. */
|
|
plaintext_len = i2d_PKCS8_PRIV_KEY_INFO(p8inf, &plaintext);
|
|
if (plaintext_len < 0) {
|
|
goto err;
|
|
}
|
|
|
|
CBB epki;
|
|
if (!CBB_init(&cbb, 128) ||
|
|
!CBB_add_asn1(&cbb, &epki, CBS_ASN1_SEQUENCE)) {
|
|
goto err;
|
|
}
|
|
|
|
int alg_ok;
|
|
if (pbe_nid == -1) {
|
|
alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (unsigned)iterations,
|
|
pass_raw, pass_raw_len, salt, salt_len);
|
|
} else {
|
|
alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (unsigned)iterations,
|
|
pass_raw, pass_raw_len, salt, salt_len);
|
|
}
|
|
if (!alg_ok) {
|
|
goto err;
|
|
}
|
|
|
|
size_t max_out = (size_t)plaintext_len + EVP_CIPHER_CTX_block_size(&ctx);
|
|
if (max_out < (size_t)plaintext_len) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
|
|
goto err;
|
|
}
|
|
|
|
CBB ciphertext;
|
|
uint8_t *out;
|
|
int n1, n2;
|
|
if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
|
|
!CBB_reserve(&ciphertext, &out, max_out) ||
|
|
!EVP_CipherUpdate(&ctx, out, &n1, plaintext, plaintext_len) ||
|
|
!EVP_CipherFinal_ex(&ctx, out + n1, &n2) ||
|
|
!CBB_did_write(&ciphertext, n1 + n2) ||
|
|
!CBB_finish(&cbb, &der, &der_len)) {
|
|
goto err;
|
|
}
|
|
|
|
/* Convert back to legacy ASN.1 objects. */
|
|
const uint8_t *ptr = der;
|
|
ret = d2i_X509_SIG(NULL, &ptr, der_len);
|
|
if (ret == NULL || ptr != der + der_len) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR);
|
|
X509_SIG_free(ret);
|
|
ret = NULL;
|
|
}
|
|
|
|
err:
|
|
if (plaintext_len > 0) {
|
|
OPENSSL_cleanse(plaintext, plaintext_len);
|
|
}
|
|
OPENSSL_free(plaintext);
|
|
OPENSSL_free(salt_buf);
|
|
OPENSSL_free(der);
|
|
CBB_cleanup(&cbb);
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return ret;
|
|
}
|
|
|
|
X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
|
|
int pass_len, const uint8_t *salt, size_t salt_len,
|
|
int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
|
|
uint8_t *pass_raw = NULL;
|
|
size_t pass_raw_len = 0;
|
|
if (!pass_to_pass_raw(pbe_nid, pass, pass_len, &pass_raw, &pass_raw_len)) {
|
|
return NULL;
|
|
}
|
|
|
|
X509_SIG *ret = pkcs8_encrypt_raw(pbe_nid, cipher, pass_raw, pass_raw_len,
|
|
salt, salt_len, iterations, p8inf);
|
|
|
|
if (pass_raw) {
|
|
OPENSSL_cleanse(pass_raw, pass_raw_len);
|
|
OPENSSL_free(pass_raw);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) {
|
|
uint8_t *der = NULL;
|
|
int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der);
|
|
if (der_len < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
CBS cbs;
|
|
CBS_init(&cbs, der, (size_t)der_len);
|
|
EVP_PKEY *ret = EVP_parse_private_key(&cbs);
|
|
if (ret == NULL || CBS_len(&cbs) != 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
EVP_PKEY_free(ret);
|
|
OPENSSL_free(der);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_free(der);
|
|
return ret;
|
|
}
|
|
|
|
PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) {
|
|
CBB cbb;
|
|
uint8_t *der = NULL;
|
|
size_t der_len;
|
|
if (!CBB_init(&cbb, 0) ||
|
|
!EVP_marshal_private_key(&cbb, pkey) ||
|
|
!CBB_finish(&cbb, &der, &der_len) ||
|
|
der_len > LONG_MAX) {
|
|
CBB_cleanup(&cbb);
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
const uint8_t *p = der;
|
|
PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len);
|
|
if (p8 == NULL || p != der + der_len) {
|
|
PKCS8_PRIV_KEY_INFO_free(p8);
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
OPENSSL_free(der);
|
|
return p8;
|
|
|
|
err:
|
|
OPENSSL_free(der);
|
|
return NULL;
|
|
}
|
|
|
|
struct pkcs12_context {
|
|
EVP_PKEY **out_key;
|
|
STACK_OF(X509) *out_certs;
|
|
uint8_t *password;
|
|
size_t password_len;
|
|
};
|
|
|
|
/* PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12
|
|
* structure. */
|
|
static int PKCS12_handle_sequence(
|
|
CBS *sequence, struct pkcs12_context *ctx,
|
|
int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) {
|
|
uint8_t *der_bytes = NULL;
|
|
size_t der_len;
|
|
CBS in;
|
|
int ret = 0;
|
|
|
|
/* Although a BER->DER conversion is done at the beginning of |PKCS12_parse|,
|
|
* the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the
|
|
* conversion cannot see through those wrappings. So each time we step
|
|
* through one we need to convert to DER again. */
|
|
if (!CBS_asn1_ber_to_der(sequence, &der_bytes, &der_len)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
return 0;
|
|
}
|
|
|
|
if (der_bytes != NULL) {
|
|
CBS_init(&in, der_bytes, der_len);
|
|
} else {
|
|
CBS_init(&in, CBS_data(sequence), CBS_len(sequence));
|
|
}
|
|
|
|
CBS child;
|
|
if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) ||
|
|
CBS_len(&in) != 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
while (CBS_len(&child) > 0) {
|
|
CBS element;
|
|
if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
if (!handle_element(&element, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_free(der_bytes);
|
|
return ret;
|
|
}
|
|
|
|
/* 1.2.840.113549.1.12.10.1.2 */
|
|
static const uint8_t kPKCS8ShroudedKeyBag[] = {
|
|
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02};
|
|
|
|
/* 1.2.840.113549.1.12.10.1.3 */
|
|
static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
|
|
0x01, 0x0c, 0x0a, 0x01, 0x03};
|
|
|
|
/* 1.2.840.113549.1.9.22.1 */
|
|
static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
|
|
0x0d, 0x01, 0x09, 0x16, 0x01};
|
|
|
|
/* PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12
|
|
* structure. */
|
|
static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) {
|
|
CBS bag_id, wrapped_value;
|
|
if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) ||
|
|
!CBS_get_asn1(safe_bag, &wrapped_value,
|
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)
|
|
/* Ignore the bagAttributes field. */) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
return 0;
|
|
}
|
|
|
|
if (CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag,
|
|
sizeof(kPKCS8ShroudedKeyBag))) {
|
|
/* See RFC 7292, section 4.2.2. */
|
|
if (*ctx->out_key) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12);
|
|
return 0;
|
|
}
|
|
|
|
if (CBS_len(&wrapped_value) > LONG_MAX) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
return 0;
|
|
}
|
|
|
|
/* |encrypted| isn't actually an X.509 signature, but it has the same
|
|
* structure as one and so |X509_SIG| is reused to store it. */
|
|
const uint8_t *inp = CBS_data(&wrapped_value);
|
|
X509_SIG *encrypted =
|
|
d2i_X509_SIG(NULL, &inp, (long)CBS_len(&wrapped_value));
|
|
if (encrypted == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
return 0;
|
|
}
|
|
if (inp != CBS_data(&wrapped_value) + CBS_len(&wrapped_value)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
X509_SIG_free(encrypted);
|
|
return 0;
|
|
}
|
|
|
|
PKCS8_PRIV_KEY_INFO *pki =
|
|
pkcs8_decrypt_raw(encrypted, ctx->password, ctx->password_len);
|
|
X509_SIG_free(encrypted);
|
|
if (pki == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
*ctx->out_key = EVP_PKCS82PKEY(pki);
|
|
PKCS8_PRIV_KEY_INFO_free(pki);
|
|
return ctx->out_key != NULL;
|
|
}
|
|
|
|
if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) {
|
|
/* See RFC 7292, section 4.2.3. */
|
|
CBS cert_bag, cert_type, wrapped_cert, cert;
|
|
if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
|
|
!CBS_get_asn1(&cert_bag, &wrapped_cert,
|
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
|
|
!CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
return 0;
|
|
}
|
|
|
|
/* Skip unknown certificate types. */
|
|
if (!CBS_mem_equal(&cert_type, kX509Certificate,
|
|
sizeof(kX509Certificate))) {
|
|
return 1;
|
|
}
|
|
|
|
if (CBS_len(&cert) > LONG_MAX) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t *inp = CBS_data(&cert);
|
|
X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert));
|
|
if (!x509) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
return 0;
|
|
}
|
|
|
|
if (inp != CBS_data(&cert) + CBS_len(&cert)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
X509_free(x509);
|
|
return 0;
|
|
}
|
|
|
|
if (0 == sk_X509_push(ctx->out_certs, x509)) {
|
|
X509_free(x509);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Unknown element type - ignore it. */
|
|
return 1;
|
|
}
|
|
|
|
/* 1.2.840.113549.1.7.1 */
|
|
static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
|
|
0x0d, 0x01, 0x07, 0x01};
|
|
|
|
/* 1.2.840.113549.1.7.6 */
|
|
static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
|
|
0x0d, 0x01, 0x07, 0x06};
|
|
|
|
/* PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a
|
|
* PKCS#12 structure. */
|
|
static int PKCS12_handle_content_info(CBS *content_info,
|
|
struct pkcs12_context *ctx) {
|
|
CBS content_type, wrapped_contents, contents;
|
|
int ret = 0;
|
|
uint8_t *storage = NULL;
|
|
|
|
if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) ||
|
|
!CBS_get_asn1(content_info, &wrapped_contents,
|
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
|
|
CBS_len(content_info) != 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
if (CBS_mem_equal(&content_type, kPKCS7EncryptedData,
|
|
sizeof(kPKCS7EncryptedData))) {
|
|
/* See https://tools.ietf.org/html/rfc2315#section-13.
|
|
*
|
|
* PKCS#7 encrypted data inside a PKCS#12 structure is generally an
|
|
* encrypted certificate bag and it's generally encrypted with 40-bit
|
|
* RC2-CBC. */
|
|
CBS version_bytes, eci, contents_type, ai, encrypted_contents;
|
|
uint8_t *out;
|
|
size_t out_len;
|
|
|
|
if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) ||
|
|
/* EncryptedContentInfo, see
|
|
* https://tools.ietf.org/html/rfc2315#section-10.1 */
|
|
!CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) ||
|
|
/* AlgorithmIdentifier, see
|
|
* https://tools.ietf.org/html/rfc5280#section-4.1.1.2 */
|
|
!CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1_implicit_string(
|
|
&eci, &encrypted_contents, &storage,
|
|
CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
if (!pbe_decrypt(&out, &out_len, &ai, ctx->password, ctx->password_len,
|
|
CBS_data(&encrypted_contents),
|
|
CBS_len(&encrypted_contents))) {
|
|
goto err;
|
|
}
|
|
|
|
CBS safe_contents;
|
|
CBS_init(&safe_contents, out, out_len);
|
|
ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag);
|
|
OPENSSL_free(out);
|
|
} else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
|
|
CBS octet_string_contents;
|
|
|
|
if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents,
|
|
CBS_ASN1_OCTETSTRING)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
ret = PKCS12_handle_sequence(&octet_string_contents, ctx,
|
|
PKCS12_handle_safe_bag);
|
|
} else {
|
|
/* Unknown element type - ignore it. */
|
|
ret = 1;
|
|
}
|
|
|
|
err:
|
|
OPENSSL_free(storage);
|
|
return ret;
|
|
}
|
|
|
|
int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs,
|
|
CBS *ber_in, const char *password) {
|
|
uint8_t *der_bytes = NULL;
|
|
size_t der_len;
|
|
CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes;
|
|
uint64_t version;
|
|
int ret = 0;
|
|
struct pkcs12_context ctx;
|
|
const size_t original_out_certs_len = sk_X509_num(out_certs);
|
|
|
|
/* The input may be in BER format. */
|
|
if (!CBS_asn1_ber_to_der(ber_in, &der_bytes, &der_len)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
return 0;
|
|
}
|
|
if (der_bytes != NULL) {
|
|
CBS_init(&in, der_bytes, der_len);
|
|
} else {
|
|
CBS_init(&in, CBS_data(ber_in), CBS_len(ber_in));
|
|
}
|
|
|
|
*out_key = NULL;
|
|
OPENSSL_memset(&ctx, 0, sizeof(ctx));
|
|
|
|
/* See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section
|
|
* four. */
|
|
if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) ||
|
|
CBS_len(&in) != 0 ||
|
|
!CBS_get_asn1_uint64(&pfx, &version)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
if (version < 3) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION);
|
|
goto err;
|
|
}
|
|
|
|
if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
if (CBS_len(&pfx) == 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC);
|
|
goto err;
|
|
}
|
|
|
|
if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
/* authsafe is a PKCS#7 ContentInfo. See
|
|
* https://tools.ietf.org/html/rfc2315#section-7. */
|
|
if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) ||
|
|
!CBS_get_asn1(&authsafe, &wrapped_authsafes,
|
|
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
/* The content type can either be data or signedData. The latter indicates
|
|
* that it's signed by a public key, which isn't supported. */
|
|
if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED);
|
|
goto err;
|
|
}
|
|
|
|
if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
ctx.out_key = out_key;
|
|
ctx.out_certs = out_certs;
|
|
if (!ascii_to_ucs2(password, password ? strlen(password) : 0, &ctx.password,
|
|
&ctx.password_len)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
/* Verify the MAC. */
|
|
{
|
|
CBS mac, hash_type_seq, hash_oid, salt, expected_mac;
|
|
uint64_t iterations;
|
|
int hash_nid;
|
|
const EVP_MD *md;
|
|
uint8_t hmac_key[EVP_MAX_MD_SIZE];
|
|
uint8_t hmac[EVP_MAX_MD_SIZE];
|
|
unsigned hmac_len;
|
|
|
|
if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&mac, &hash_type_seq, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&hash_type_seq, &hash_oid, CBS_ASN1_OBJECT) ||
|
|
!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) ||
|
|
!CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
|
|
/* The iteration count is optional and the default is one. */
|
|
iterations = 1;
|
|
if (CBS_len(&mac_data) > 0) {
|
|
if (!CBS_get_asn1_uint64(&mac_data, &iterations) ||
|
|
iterations > UINT_MAX) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
hash_nid = OBJ_cbs2nid(&hash_oid);
|
|
if (hash_nid == NID_undef ||
|
|
(md = EVP_get_digestbynid(hash_nid)) == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_HASH);
|
|
goto err;
|
|
}
|
|
|
|
if (!pkcs12_key_gen_raw(ctx.password, ctx.password_len, CBS_data(&salt),
|
|
CBS_len(&salt), PKCS12_MAC_ID, iterations,
|
|
EVP_MD_size(md), hmac_key, md)) {
|
|
goto err;
|
|
}
|
|
|
|
if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(&authsafes),
|
|
CBS_len(&authsafes), hmac, &hmac_len)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!CBS_mem_equal(&expected_mac, hmac, hmac_len)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* authsafes contains a series of PKCS#7 ContentInfos. */
|
|
if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) {
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_free(ctx.password);
|
|
OPENSSL_free(der_bytes);
|
|
if (!ret) {
|
|
EVP_PKEY_free(*out_key);
|
|
*out_key = NULL;
|
|
while (sk_X509_num(out_certs) > original_out_certs_len) {
|
|
X509 *x509 = sk_X509_pop(out_certs);
|
|
X509_free(x509);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void PKCS12_PBE_add(void) {}
|
|
|
|
struct pkcs12_st {
|
|
uint8_t *ber_bytes;
|
|
size_t ber_len;
|
|
};
|
|
|
|
PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes,
|
|
size_t ber_len) {
|
|
PKCS12 *p12;
|
|
|
|
p12 = OPENSSL_malloc(sizeof(PKCS12));
|
|
if (!p12) {
|
|
return NULL;
|
|
}
|
|
|
|
p12->ber_bytes = OPENSSL_malloc(ber_len);
|
|
if (!p12->ber_bytes) {
|
|
OPENSSL_free(p12);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len);
|
|
p12->ber_len = ber_len;
|
|
*ber_bytes += ber_len;
|
|
|
|
if (out_p12) {
|
|
PKCS12_free(*out_p12);
|
|
|
|
*out_p12 = p12;
|
|
}
|
|
|
|
return p12;
|
|
}
|
|
|
|
PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) {
|
|
size_t used = 0;
|
|
BUF_MEM *buf;
|
|
const uint8_t *dummy;
|
|
static const size_t kMaxSize = 256 * 1024;
|
|
PKCS12 *ret = NULL;
|
|
|
|
buf = BUF_MEM_new();
|
|
if (buf == NULL) {
|
|
return NULL;
|
|
}
|
|
if (BUF_MEM_grow(buf, 8192) == 0) {
|
|
goto out;
|
|
}
|
|
|
|
for (;;) {
|
|
int n = BIO_read(bio, &buf->data[used], buf->length - used);
|
|
if (n < 0) {
|
|
if (used == 0) {
|
|
goto out;
|
|
}
|
|
/* Workaround a bug in node.js. It uses a memory BIO for this in the wrong
|
|
* mode. */
|
|
n = 0;
|
|
}
|
|
|
|
if (n == 0) {
|
|
break;
|
|
}
|
|
used += n;
|
|
|
|
if (used < buf->length) {
|
|
continue;
|
|
}
|
|
|
|
if (buf->length > kMaxSize ||
|
|
BUF_MEM_grow(buf, buf->length * 2) == 0) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
dummy = (uint8_t*) buf->data;
|
|
ret = d2i_PKCS12(out_p12, &dummy, used);
|
|
|
|
out:
|
|
BUF_MEM_free(buf);
|
|
return ret;
|
|
}
|
|
|
|
PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) {
|
|
BIO *bio;
|
|
PKCS12 *ret;
|
|
|
|
bio = BIO_new_fp(fp, 0 /* don't take ownership */);
|
|
if (!bio) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = d2i_PKCS12_bio(bio, out_p12);
|
|
BIO_free(bio);
|
|
return ret;
|
|
}
|
|
|
|
int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey,
|
|
X509 **out_cert, STACK_OF(X509) **out_ca_certs) {
|
|
CBS ber_bytes;
|
|
STACK_OF(X509) *ca_certs = NULL;
|
|
char ca_certs_alloced = 0;
|
|
|
|
if (out_ca_certs != NULL && *out_ca_certs != NULL) {
|
|
ca_certs = *out_ca_certs;
|
|
}
|
|
|
|
if (!ca_certs) {
|
|
ca_certs = sk_X509_new_null();
|
|
if (ca_certs == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
ca_certs_alloced = 1;
|
|
}
|
|
|
|
CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len);
|
|
if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) {
|
|
if (ca_certs_alloced) {
|
|
sk_X509_free(ca_certs);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
*out_cert = NULL;
|
|
if (sk_X509_num(ca_certs) > 0) {
|
|
*out_cert = sk_X509_shift(ca_certs);
|
|
}
|
|
|
|
if (out_ca_certs) {
|
|
*out_ca_certs = ca_certs;
|
|
} else {
|
|
sk_X509_pop_free(ca_certs, X509_free);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int PKCS12_verify_mac(const PKCS12 *p12, const char *password,
|
|
int password_len) {
|
|
if (password == NULL) {
|
|
if (password_len != 0) {
|
|
return 0;
|
|
}
|
|
} else if (password_len != -1 &&
|
|
(password[password_len] != 0 ||
|
|
OPENSSL_memchr(password, 0, password_len) != NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
EVP_PKEY *pkey = NULL;
|
|
X509 *cert = NULL;
|
|
if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) {
|
|
ERR_clear_error();
|
|
return 0;
|
|
}
|
|
|
|
EVP_PKEY_free(pkey);
|
|
X509_free(cert);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void PKCS12_free(PKCS12 *p12) {
|
|
if (p12 == NULL) {
|
|
return;
|
|
}
|
|
OPENSSL_free(p12->ber_bytes);
|
|
OPENSSL_free(p12);
|
|
}
|