boringssl/ssl/tls_record.cc
David Benjamin cfc11c2320 C++-ify SSL_AEAD_CTX.
This adds several utilities as replacements for new and delete and makes
bssl::UniquePtr work with our private types.

Later work can convert more incrementally. I did this one more
aggressively to see how it'd work. Unfortunately, in doing so, I needed
to remove the NULL SSL_AEAD_CTX "method" receiver trick to appease
clang. The null cipher is now represented by a concrete SSL_AEAD_CTX.
The long-lived references to SSL_AEAD_CTX are not yet in types with
constructors, so they still bare Delete rather than UniquePtr for now.

Though this does mean we may be able to move the sequence number into
SSLAEADContext later which is one less object for DTLS to carry around.

Bug: 132
Change-Id: I506b404addafb692055d5709b0ca6d5439a4e6be
Reviewed-on: https://boringssl-review.googlesource.com/18164
Reviewed-by: Adam Langley <agl@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
2017-07-20 03:17:06 +00:00

593 lines
22 KiB
C++

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#define BORINGSSL_INTERNAL_CXX_TYPES
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "internal.h"
#include "../crypto/internal.h"
namespace bssl {
/* kMaxEmptyRecords is the number of consecutive, empty records that will be
* processed. Without this limit an attacker could send empty records at a
* faster rate than we can process and cause record processing to loop
* forever. */
static const uint8_t kMaxEmptyRecords = 32;
/* kMaxEarlyDataSkipped is the maximum number of rejected early data bytes that
* will be skipped. Without this limit an attacker could send records at a
* faster rate than we can process and cause trial decryption to loop forever.
* This value should be slightly above kMaxEarlyDataAccepted, which is measured
* in plaintext. */
static const size_t kMaxEarlyDataSkipped = 16384;
/* kMaxWarningAlerts is the number of consecutive warning alerts that will be
* processed. */
static const uint8_t kMaxWarningAlerts = 4;
/* ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher
* state needs record-splitting and zero otherwise. */
static int ssl_needs_record_splitting(const SSL *ssl) {
#if !defined(BORINGSSL_UNSAFE_FUZZER_MODE)
return !ssl->s3->aead_write_ctx->is_null_cipher() &&
ssl->s3->aead_write_ctx->version() < TLS1_1_VERSION &&
(ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 &&
SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher());
#else
return 0;
#endif
}
int ssl_record_sequence_update(uint8_t *seq, size_t seq_len) {
for (size_t i = seq_len - 1; i < seq_len; i--) {
++seq[i];
if (seq[i] != 0) {
return 1;
}
}
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
size_t ssl_record_prefix_len(const SSL *ssl) {
size_t header_len;
if (SSL_is_dtls(ssl)) {
header_len = DTLS1_RT_HEADER_LENGTH;
} else {
header_len = SSL3_RT_HEADER_LENGTH;
}
return header_len + ssl->s3->aead_read_ctx->ExplicitNonceLen();
}
size_t ssl_seal_align_prefix_len(const SSL *ssl) {
if (SSL_is_dtls(ssl)) {
return DTLS1_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen();
}
size_t ret =
SSL3_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen();
if (ssl_needs_record_splitting(ssl)) {
ret += SSL3_RT_HEADER_LENGTH;
ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher());
}
return ret;
}
enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, CBS *out,
size_t *out_consumed, uint8_t *out_alert,
uint8_t *in, size_t in_len) {
*out_consumed = 0;
CBS cbs;
CBS_init(&cbs, in, in_len);
/* Decode the record header. */
uint8_t type;
uint16_t version, ciphertext_len;
if (!CBS_get_u8(&cbs, &type) ||
!CBS_get_u16(&cbs, &version) ||
!CBS_get_u16(&cbs, &ciphertext_len)) {
*out_consumed = SSL3_RT_HEADER_LENGTH;
return ssl_open_record_partial;
}
int version_ok;
if (ssl->s3->aead_read_ctx->is_null_cipher()) {
/* Only check the first byte. Enforcing beyond that can prevent decoding
* version negotiation failure alerts. */
version_ok = (version >> 8) == SSL3_VERSION_MAJOR;
} else if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
/* Earlier versions of TLS switch the record version. */
version_ok = version == ssl->version;
} else {
/* Starting TLS 1.3, the version field is frozen at {3, 1}. */
version_ok = version == TLS1_VERSION;
}
if (!version_ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
*out_alert = SSL_AD_PROTOCOL_VERSION;
return ssl_open_record_error;
}
/* Check the ciphertext length. */
if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
*out_alert = SSL_AD_RECORD_OVERFLOW;
return ssl_open_record_error;
}
/* Extract the body. */
CBS body;
if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) {
*out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len;
return ssl_open_record_partial;
}
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, in,
SSL3_RT_HEADER_LENGTH);
*out_consumed = in_len - CBS_len(&cbs);
/* Skip early data received when expecting a second ClientHello if we rejected
* 0RTT. */
if (ssl->s3->skip_early_data &&
ssl->s3->aead_read_ctx->is_null_cipher() &&
type == SSL3_RT_APPLICATION_DATA) {
goto skipped_data;
}
/* Decrypt the body in-place. */
if (!ssl->s3->aead_read_ctx->Open(out, type, version, ssl->s3->read_sequence,
(uint8_t *)CBS_data(&body),
CBS_len(&body))) {
if (ssl->s3->skip_early_data && !ssl->s3->aead_read_ctx->is_null_cipher()) {
ERR_clear_error();
goto skipped_data;
}
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
*out_alert = SSL_AD_BAD_RECORD_MAC;
return ssl_open_record_error;
}
ssl->s3->skip_early_data = 0;
if (!ssl_record_sequence_update(ssl->s3->read_sequence, 8)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return ssl_open_record_error;
}
/* TLS 1.3 hides the record type inside the encrypted data. */
if (!ssl->s3->aead_read_ctx->is_null_cipher() &&
ssl->s3->aead_read_ctx->version() >= TLS1_3_VERSION) {
/* The outer record type is always application_data. */
if (type != SSL3_RT_APPLICATION_DATA) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_OUTER_RECORD_TYPE);
*out_alert = SSL_AD_DECODE_ERROR;
return ssl_open_record_error;
}
do {
if (!CBS_get_last_u8(out, &type)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
*out_alert = SSL_AD_DECRYPT_ERROR;
return ssl_open_record_error;
}
} while (type == 0);
}
/* Check the plaintext length. */
if (CBS_len(out) > SSL3_RT_MAX_PLAIN_LENGTH) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
*out_alert = SSL_AD_RECORD_OVERFLOW;
return ssl_open_record_error;
}
/* Limit the number of consecutive empty records. */
if (CBS_len(out) == 0) {
ssl->s3->empty_record_count++;
if (ssl->s3->empty_record_count > kMaxEmptyRecords) {
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
return ssl_open_record_error;
}
/* Apart from the limit, empty records are returned up to the caller. This
* allows the caller to reject records of the wrong type. */
} else {
ssl->s3->empty_record_count = 0;
}
if (type == SSL3_RT_ALERT) {
/* Return end_of_early_data alerts as-is for the caller to process. */
if (CBS_len(out) == 2 &&
CBS_data(out)[0] == SSL3_AL_WARNING &&
CBS_data(out)[1] == TLS1_AD_END_OF_EARLY_DATA) {
*out_type = type;
return ssl_open_record_success;
}
return ssl_process_alert(ssl, out_alert, CBS_data(out), CBS_len(out));
}
ssl->s3->warning_alert_count = 0;
*out_type = type;
return ssl_open_record_success;
skipped_data:
ssl->s3->early_data_skipped += *out_consumed;
if (ssl->s3->early_data_skipped < *out_consumed) {
ssl->s3->early_data_skipped = kMaxEarlyDataSkipped + 1;
}
if (ssl->s3->early_data_skipped > kMaxEarlyDataSkipped) {
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA);
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
return ssl_open_record_error;
}
return ssl_open_record_discard;
}
static int do_seal_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
uint8_t *out_suffix, size_t *out_suffix_len,
const size_t max_out_suffix_len, uint8_t type,
const uint8_t *in, const size_t in_len) {
assert(in == out || !buffers_alias(in, in_len, out, in_len));
assert(!buffers_alias(in, in_len, out_prefix, ssl_record_prefix_len(ssl)));
assert(!buffers_alias(in, in_len, out_suffix, max_out_suffix_len));
/* TLS 1.3 hides the actual record type inside the encrypted data. */
uint8_t *extra_in = NULL;
size_t extra_in_len = 0;
if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
ssl->s3->aead_write_ctx->version() >= TLS1_3_VERSION) {
extra_in = &type;
extra_in_len = 1;
out_prefix[0] = SSL3_RT_APPLICATION_DATA;
} else {
out_prefix[0] = type;
}
/* The TLS record-layer version number is meaningless and, starting in
* TLS 1.3, is frozen at TLS 1.0. But for historical reasons, SSL 3.0
* ClientHellos should use SSL 3.0 and pre-TLS-1.3 expects the version
* to change after version negotiation. */
uint16_t wire_version = TLS1_VERSION;
if (ssl->s3->hs != NULL && ssl->s3->hs->max_version == SSL3_VERSION) {
wire_version = SSL3_VERSION;
}
if (ssl->s3->have_version && ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
wire_version = ssl->version;
}
out_prefix[1] = wire_version >> 8;
out_prefix[2] = wire_version & 0xff;
/* Write the ciphertext, leaving two bytes for the length. */
if (!ssl->s3->aead_write_ctx->SealScatter(
out_prefix + SSL3_RT_HEADER_LENGTH, out, out_suffix, out_suffix_len,
max_out_suffix_len, type, wire_version, ssl->s3->write_sequence, in,
in_len, extra_in, extra_in_len) ||
!ssl_record_sequence_update(ssl->s3->write_sequence, 8)) {
return 0;
}
/* Fill in the length. */
const size_t ciphertext_len =
ssl->s3->aead_write_ctx->ExplicitNonceLen() + in_len + *out_suffix_len;
if (ciphertext_len >= 1 << 15) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
out_prefix[3] = ciphertext_len >> 8;
out_prefix[4] = ciphertext_len & 0xff;
ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, out_prefix,
SSL3_RT_HEADER_LENGTH);
return 1;
}
static size_t tls_seal_scatter_prefix_len(const SSL *ssl, uint8_t type,
size_t in_len) {
size_t ret = SSL3_RT_HEADER_LENGTH;
if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
ssl_needs_record_splitting(ssl)) {
/* In the case of record splitting, the 1-byte record (of the 1/n-1 split)
* will be placed in the prefix, as will four of the five bytes of the
* record header for the main record. The final byte will replace the first
* byte of the plaintext that was used in the small record. */
ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher());
ret += SSL3_RT_HEADER_LENGTH - 1;
} else {
ret += ssl->s3->aead_write_ctx->ExplicitNonceLen();
}
return ret;
}
/* tls_seal_scatter_record seals a new record of type |type| and body |in| and
* splits it between |out_prefix|, |out|, and |out_suffix|. Exactly
* |tls_seal_scatter_prefix_len| bytes are written to |out_prefix|, |in_len|
* bytes to |out|, and up to 1 + |SSLAEADContext::MaxOverhead| bytes to
* |out_suffix|. |*out_suffix_len| is set to the actual number of bytes written
* to |out_suffix|. It returns one on success and zero on error. If enabled,
* |tls_seal_scatter_record| implements TLS 1.0 CBC 1/n-1 record splitting and
* may write two records concatenated. */
static int tls_seal_scatter_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
uint8_t *out_suffix, size_t *out_suffix_len,
size_t max_out_suffix_len, uint8_t type,
const uint8_t *in, size_t in_len) {
if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
ssl_needs_record_splitting(ssl)) {
assert(ssl->s3->aead_write_ctx->ExplicitNonceLen() == 0);
const size_t prefix_len = SSL3_RT_HEADER_LENGTH;
/* Write the 1-byte fragment into |out_prefix|. */
uint8_t *split_body = out_prefix + prefix_len;
uint8_t *split_suffix = split_body + 1;
/* TODO(martinkr): Make AEAD code not complain if max_suffix_len is lower
* than |EVP_AEAD_max_overhead| but still sufficiently large. */
size_t split_max_suffix_len = ssl->s3->aead_write_ctx->MaxSuffixLen(0);
size_t split_suffix_len = 0;
if (!do_seal_record(ssl, out_prefix, split_body, split_suffix,
&split_suffix_len, split_max_suffix_len, type, in, 1)) {
return 0;
}
size_t split_record_len = prefix_len + 1 + split_suffix_len;
assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len(
ssl->s3->aead_write_ctx->cipher()) ==
split_record_len);
/* Write the n-1-byte fragment. The header gets split between |out_prefix|
* (header[:-1]) and |out| (header[-1:]). */
uint8_t tmp_prefix[SSL3_RT_HEADER_LENGTH];
if (!do_seal_record(ssl, tmp_prefix, out + 1, out_suffix, out_suffix_len,
max_out_suffix_len, type, in + 1, in_len - 1)) {
return 0;
}
assert(tls_seal_scatter_prefix_len(ssl, type, in_len) ==
split_record_len + SSL3_RT_HEADER_LENGTH - 1);
OPENSSL_memcpy(out_prefix + split_record_len, tmp_prefix,
SSL3_RT_HEADER_LENGTH - 1);
OPENSSL_memcpy(out, tmp_prefix + SSL3_RT_HEADER_LENGTH - 1, 1);
return 1;
}
return do_seal_record(ssl, out_prefix, out, out_suffix, out_suffix_len,
max_out_suffix_len, type, in, in_len);
}
int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
uint8_t type, const uint8_t *in, size_t in_len) {
if (buffers_alias(in, in_len, out, max_out_len)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return 0;
}
const size_t prefix_len = tls_seal_scatter_prefix_len(ssl, type, in_len);
if (in_len + prefix_len < in_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
return 0;
}
if (max_out_len < in_len + prefix_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return 0;
}
uint8_t *prefix = out;
uint8_t *body = out + prefix_len;
uint8_t *suffix = body + in_len;
size_t max_suffix_len = max_out_len - prefix_len - in_len;
size_t suffix_len = 0;
if (!tls_seal_scatter_record(ssl, prefix, body, suffix, &suffix_len,
max_suffix_len, type, in, in_len)) {
return 0;
}
if (prefix_len + in_len + suffix_len < prefix_len + in_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
return 0;
}
*out_len = prefix_len + in_len + suffix_len;
return 1;
}
enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
const uint8_t *in, size_t in_len) {
/* Alerts records may not contain fragmented or multiple alerts. */
if (in_len != 2) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
return ssl_open_record_error;
}
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_ALERT, in, in_len);
const uint8_t alert_level = in[0];
const uint8_t alert_descr = in[1];
uint16_t alert = (alert_level << 8) | alert_descr;
ssl_do_info_callback(ssl, SSL_CB_READ_ALERT, alert);
if (alert_level == SSL3_AL_WARNING) {
if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
ssl->s3->recv_shutdown = ssl_shutdown_close_notify;
return ssl_open_record_close_notify;
}
/* Warning alerts do not exist in TLS 1.3. */
if (ssl->s3->have_version &&
ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
return ssl_open_record_error;
}
ssl->s3->warning_alert_count++;
if (ssl->s3->warning_alert_count > kMaxWarningAlerts) {
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS);
return ssl_open_record_error;
}
return ssl_open_record_discard;
}
if (alert_level == SSL3_AL_FATAL) {
ssl->s3->recv_shutdown = ssl_shutdown_fatal_alert;
char tmp[16];
OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr);
BIO_snprintf(tmp, sizeof(tmp), "%d", alert_descr);
ERR_add_error_data(2, "SSL alert number ", tmp);
return ssl_open_record_fatal_alert;
}
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE);
return ssl_open_record_error;
}
} // namespace bssl
using namespace bssl;
size_t SSL_max_seal_overhead(const SSL *ssl) {
if (SSL_is_dtls(ssl)) {
return dtls_max_seal_overhead(ssl, dtls1_use_current_epoch);
}
size_t ret = SSL3_RT_HEADER_LENGTH;
ret += ssl->s3->aead_write_ctx->MaxOverhead();
/* TLS 1.3 needs an extra byte for the encrypted record type. */
if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
ssl->s3->aead_write_ctx->version() >= TLS1_3_VERSION) {
ret += 1;
}
if (ssl_needs_record_splitting(ssl)) {
ret *= 2;
}
return ret;
}