boringssl/crypto/fipsmodule/ec/internal.h
David Benjamin cfd50c63a1 Route the tuned add/dbl implementations out of EC_METHOD.
Some consumer stumbled upon EC_POINT_{add,dbl} being faster with a
"custom" P-224 curve than the built-in one and made "custom" clones to
work around this. Before the EC_FELEM refactor, EC_GFp_nistp224_method
used BN_mod_mul for all reductions in fallback point arithmetic (we
primarily support the multiplication functions and keep the low-level
point arithmetic for legacy reasons) which took quite a performance hit.

EC_FELEM fixed this, but standalone felem_{mul,sqr} calls out of
nistp224 perform a lot of reductions, rather than batching them up as
that implementation is intended. So it is still slightly faster to use a
"custom" curve.

Custom curves are the last thing we want to encourage, so just route the
tuned implementations out of EC_METHOD to close this gap. Now the
built-in implementation is always solidly faster than (or identical to)
the custom clone.  This also reduces the number of places where we mix
up tuned vs. generic implementation, which gets us closer to making
EC_POINT's representation EC_METHOD-specific.

Change-Id: I843e1101a6208eaabb56d29d342e886e523c78b4
Reviewed-on: https://boringssl-review.googlesource.com/c/32848
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
2018-11-06 00:17:19 +00:00

454 lines
19 KiB
C

/* Originally written by Bodo Moeller for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#ifndef OPENSSL_HEADER_EC_INTERNAL_H
#define OPENSSL_HEADER_EC_INTERNAL_H
#include <openssl/base.h>
#include <openssl/bn.h>
#include <openssl/ex_data.h>
#include <openssl/thread.h>
#include <openssl/type_check.h>
#include "../bn/internal.h"
#if defined(__cplusplus)
extern "C" {
#endif
// Cap the size of all field elements and scalars, including custom curves, to
// 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to
// be the largest fields anyone plausibly uses.
#define EC_MAX_SCALAR_BYTES 66
#define EC_MAX_SCALAR_WORDS ((66 + BN_BYTES - 1) / BN_BYTES)
OPENSSL_COMPILE_ASSERT(EC_MAX_SCALAR_WORDS <= BN_SMALL_MAX_WORDS,
bn_small_functions_applicable);
// An EC_SCALAR is an integer fully reduced modulo the order. Only the first
// |order->width| words are used. An |EC_SCALAR| is specific to an |EC_GROUP|
// and must not be mixed between groups.
typedef union {
// bytes is the representation of the scalar in little-endian order.
uint8_t bytes[EC_MAX_SCALAR_BYTES];
BN_ULONG words[EC_MAX_SCALAR_WORDS];
} EC_SCALAR;
// An EC_FELEM represents a field element. Only the first |field->width| words
// are used. An |EC_FELEM| is specific to an |EC_GROUP| and must not be mixed
// between groups. Additionally, the representation (whether or not elements are
// represented in Montgomery-form) may vary between |EC_METHOD|s.
typedef union {
// bytes is the representation of the field element in little-endian order.
uint8_t bytes[EC_MAX_SCALAR_BYTES];
BN_ULONG words[EC_MAX_SCALAR_WORDS];
} EC_FELEM;
// An EC_RAW_POINT represents an elliptic curve point. Unlike |EC_POINT|, it is
// a plain struct which can be stack-allocated and needs no cleanup. It is
// specific to an |EC_GROUP| and must not be mixed between groups.
typedef struct {
EC_FELEM X, Y, Z;
// X, Y, and Z are Jacobian projective coordinates. They represent
// (X/Z^2, Y/Z^3) if Z != 0 and the point at infinity otherwise.
} EC_RAW_POINT;
struct ec_method_st {
int (*group_init)(EC_GROUP *);
void (*group_finish)(EC_GROUP *);
int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *);
int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_RAW_POINT *,
BIGNUM *x, BIGNUM *y);
// add sets |r| to |a| + |b|.
void (*add)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a,
const EC_RAW_POINT *b);
// dbl sets |r| to |a| + |a|.
void (*dbl)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a);
// Computes |r = g_scalar*generator + p_scalar*p| if |g_scalar| and |p_scalar|
// are both non-null. Computes |r = g_scalar*generator| if |p_scalar| is null.
// Computes |r = p_scalar*p| if g_scalar is null. At least one of |g_scalar|
// and |p_scalar| must be non-null, and |p| must be non-null if |p_scalar| is
// non-null.
void (*mul)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_SCALAR *g_scalar,
const EC_RAW_POINT *p, const EC_SCALAR *p_scalar);
// mul_public performs the same computation as mul. It further assumes that
// the inputs are public so there is no concern about leaking their values
// through timing.
void (*mul_public)(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
const EC_SCALAR *p_scalar);
// felem_mul and felem_sqr implement multiplication and squaring,
// respectively, so that the generic |EC_POINT_add| and |EC_POINT_dbl|
// implementations can work both with |EC_GFp_mont_method| and the tuned
// operations.
//
// TODO(davidben): This constrains |EC_FELEM|'s internal representation, adds
// many indirect calls in the middle of the generic code, and a bunch of
// conversions. If p224-64.c were easily convertable to Montgomery form, we
// could say |EC_FELEM| is always in Montgomery form. If we routed the rest of
// simple.c to |EC_METHOD|, we could give |EC_POINT| an |EC_METHOD|-specific
// representation and say |EC_FELEM| is purely a |EC_GFp_mont_method| type.
void (*felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b);
void (*felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a);
int (*bignum_to_felem)(const EC_GROUP *group, EC_FELEM *out,
const BIGNUM *in);
int (*felem_to_bignum)(const EC_GROUP *group, BIGNUM *out,
const EC_FELEM *in);
// scalar_inv_montgomery sets |out| to |in|^-1, where both input and output
// are in Montgomery form.
void (*scalar_inv_montgomery)(const EC_GROUP *group, EC_SCALAR *out,
const EC_SCALAR *in);
// scalar_inv_montgomery_vartime performs the same computation as
// |scalar_inv_montgomery|. It further assumes that the inputs are public so
// there is no concern about leaking their values through timing.
int (*scalar_inv_montgomery_vartime)(const EC_GROUP *group, EC_SCALAR *out,
const EC_SCALAR *in);
// cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group
// order, with |r|. It returns one if they are equal and zero otherwise.
int (*cmp_x_coordinate)(const EC_GROUP *group, const EC_POINT *p,
const BIGNUM *r, BN_CTX *ctx);
} /* EC_METHOD */;
const EC_METHOD *EC_GFp_mont_method(void);
struct ec_group_st {
const EC_METHOD *meth;
// Unlike all other |EC_POINT|s, |generator| does not own |generator->group|
// to avoid a reference cycle.
EC_POINT *generator;
BIGNUM order;
int curve_name; // optional NID for named curve
BN_MONT_CTX *order_mont; // data for ECDSA inverse
// The following members are handled by the method functions,
// even if they appear generic
BIGNUM field; // For curves over GF(p), this is the modulus.
EC_FELEM a, b; // Curve coefficients.
int a_is_minus3; // enable optimized point arithmetics for special case
CRYPTO_refcount_t references;
BN_MONT_CTX *mont; // Montgomery structure.
EC_FELEM one; // The value one.
} /* EC_GROUP */;
struct ec_point_st {
// group is an owning reference to |group|, unless this is
// |group->generator|.
EC_GROUP *group;
EC_RAW_POINT raw;
} /* EC_POINT */;
EC_GROUP *ec_group_new(const EC_METHOD *meth);
// ec_bignum_to_felem converts |in| to an |EC_FELEM|. It returns one on success
// and zero if |in| is out of range.
int ec_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, const BIGNUM *in);
// ec_felem_to_bignum converts |in| to a |BIGNUM|. It returns one on success and
// zero on allocation failure.
int ec_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, const EC_FELEM *in);
// ec_felem_neg sets |out| to -|a|.
void ec_felem_neg(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a);
// ec_felem_add sets |out| to |a| + |b|.
void ec_felem_add(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a,
const EC_FELEM *b);
// ec_felem_add sets |out| to |a| - |b|.
void ec_felem_sub(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a,
const EC_FELEM *b);
// ec_felem_non_zero_mask returns all ones if |a| is non-zero and all zeros
// otherwise.
BN_ULONG ec_felem_non_zero_mask(const EC_GROUP *group, const EC_FELEM *a);
// ec_felem_select, in constant time, sets |out| to |a| if |mask| is all ones
// and |b| if |mask| is all zeros.
void ec_felem_select(const EC_GROUP *group, EC_FELEM *out, BN_ULONG mask,
const EC_FELEM *a, const EC_FELEM *b);
// ec_felem_equal returns one if |a| and |b| are equal and zero otherwise. It
// treats |a| and |b| as public and does *not* run in constant time.
int ec_felem_equal(const EC_GROUP *group, const EC_FELEM *a, const EC_FELEM *b);
// ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to
// |*out|. It returns one on success and zero if |in| is out of range.
OPENSSL_EXPORT int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
const BIGNUM *in);
// ec_random_nonzero_scalar sets |out| to a uniformly selected random value from
// 1 to |group->order| - 1. It returns one on success and zero on error.
int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out,
const uint8_t additional_data[32]);
// ec_scalar_add sets |r| to |a| + |b|.
void ec_scalar_add(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a,
const EC_SCALAR *b);
// ec_scalar_to_montgomery sets |r| to |a| in Montgomery form.
void ec_scalar_to_montgomery(const EC_GROUP *group, EC_SCALAR *r,
const EC_SCALAR *a);
// ec_scalar_to_montgomery sets |r| to |a| converted from Montgomery form.
void ec_scalar_from_montgomery(const EC_GROUP *group, EC_SCALAR *r,
const EC_SCALAR *a);
// ec_scalar_mul_montgomery sets |r| to |a| * |b| where inputs and outputs are
// in Montgomery form.
void ec_scalar_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r,
const EC_SCALAR *a, const EC_SCALAR *b);
// ec_scalar_mul_montgomery sets |r| to |a|^-1 where inputs and outputs are in
// Montgomery form.
void ec_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r,
const EC_SCALAR *a);
// ec_scalar_inv_montgomery_vartime performs the same actions as
// |ec_scalar_inv_montgomery|, but in variable time.
int ec_scalar_inv_montgomery_vartime(const EC_GROUP *group, EC_SCALAR *r,
const EC_SCALAR *a);
// ec_point_mul_scalar sets |r| to generator * |g_scalar| + |p| *
// |p_scalar|. Unlike other functions which take |EC_SCALAR|, |g_scalar| and
// |p_scalar| need not be fully reduced. They need only contain as many bits as
// the order.
int ec_point_mul_scalar(const EC_GROUP *group, EC_POINT *r,
const EC_SCALAR *g_scalar, const EC_POINT *p,
const EC_SCALAR *p_scalar, BN_CTX *ctx);
// ec_point_mul_scalar_public performs the same computation as
// ec_point_mul_scalar. It further assumes that the inputs are public so
// there is no concern about leaking their values through timing.
OPENSSL_EXPORT int ec_point_mul_scalar_public(
const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
// ec_cmp_x_coordinate compares the x (affine) coordinate of |p| with |r|. It
// returns one if they are equal and zero otherwise. The |ctx| must have been
// started by the caller.
int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_POINT *p,
const BIGNUM *r, BN_CTX *ctx);
// ec_field_element_to_scalar reduces |r| modulo |group->order|. |r| must
// previously have been reduced modulo |group->field|.
int ec_field_element_to_scalar(const EC_GROUP *group, BIGNUM *r);
void ec_GFp_simple_mul(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
const EC_SCALAR *p_scalar);
// ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of
// |scalar| to |out|. |out| must have room for |bits| + 1 elements, each of
// which will be either zero or odd with an absolute value less than 2^w
// satisfying
// scalar = \sum_j out[j]*2^j
// where at most one of any w+1 consecutive digits is non-zero
// with the exception that the most significant digit may be only
// w-1 zeros away from that next non-zero digit.
void ec_compute_wNAF(const EC_GROUP *group, int8_t *out,
const EC_SCALAR *scalar, size_t bits, int w);
void ec_GFp_simple_mul_public(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
const EC_SCALAR *p_scalar);
// method functions in simple.c
int ec_GFp_simple_group_init(EC_GROUP *);
void ec_GFp_simple_group_finish(EC_GROUP *);
int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *);
int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
BIGNUM *b);
unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *);
void ec_GFp_simple_point_init(EC_RAW_POINT *);
void ec_GFp_simple_point_copy(EC_RAW_POINT *, const EC_RAW_POINT *);
void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_RAW_POINT *);
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_RAW_POINT *,
const BIGNUM *x,
const BIGNUM *y);
void ec_GFp_simple_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a,
const EC_RAW_POINT *b);
void ec_GFp_simple_dbl(const EC_GROUP *, EC_RAW_POINT *r,
const EC_RAW_POINT *a);
void ec_GFp_simple_invert(const EC_GROUP *, EC_RAW_POINT *);
int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_RAW_POINT *);
int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_RAW_POINT *);
int ec_GFp_simple_cmp(const EC_GROUP *, const EC_RAW_POINT *a,
const EC_RAW_POINT *b);
void ec_simple_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r,
const EC_SCALAR *a);
int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group, EC_SCALAR *r,
const EC_SCALAR *a);
// ec_GFp_simple_cmp_x_coordinate compares the x (affine) coordinate of |p|, mod
// the group order, with |r|. It returns one on success or zero otherwise.
int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_POINT *p,
const BIGNUM *r, BN_CTX *ctx);
// method functions in montgomery.c
int ec_GFp_mont_group_init(EC_GROUP *);
int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *);
void ec_GFp_mont_group_finish(EC_GROUP *);
void ec_GFp_mont_felem_mul(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b);
void ec_GFp_mont_felem_sqr(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a);
int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out,
const BIGNUM *in);
int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out,
const EC_FELEM *in);
void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
const EC_METHOD *EC_GFp_nistp224_method(void);
const EC_METHOD *EC_GFp_nistp256_method(void);
// EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with
// x86-64 optimized P256. See http://eprint.iacr.org/2013/816.
const EC_METHOD *EC_GFp_nistz256_method(void);
// An EC_WRAPPED_SCALAR is an |EC_SCALAR| with a parallel |BIGNUM|
// representation. It exists to support the |EC_KEY_get0_private_key| API.
typedef struct {
BIGNUM bignum;
EC_SCALAR scalar;
} EC_WRAPPED_SCALAR;
struct ec_key_st {
EC_GROUP *group;
EC_POINT *pub_key;
EC_WRAPPED_SCALAR *priv_key;
// fixed_k may contain a specific value of 'k', to be used in ECDSA signing.
// This is only for the FIPS power-on tests.
BIGNUM *fixed_k;
unsigned int enc_flag;
point_conversion_form_t conv_form;
CRYPTO_refcount_t references;
ECDSA_METHOD *ecdsa_meth;
CRYPTO_EX_DATA ex_data;
} /* EC_KEY */;
struct built_in_curve {
int nid;
const uint8_t *oid;
uint8_t oid_len;
// comment is a human-readable string describing the curve.
const char *comment;
// param_len is the number of bytes needed to store a field element.
uint8_t param_len;
// params points to an array of 6*|param_len| bytes which hold the field
// elements of the following (in big-endian order): prime, a, b, generator x,
// generator y, order.
const uint8_t *params;
const EC_METHOD *method;
};
#define OPENSSL_NUM_BUILT_IN_CURVES 4
struct built_in_curves {
struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES];
};
// OPENSSL_built_in_curves returns a pointer to static information about
// standard curves. The array is terminated with an entry where |nid| is
// |NID_undef|.
const struct built_in_curves *OPENSSL_built_in_curves(void);
#if defined(__cplusplus)
} // extern C
#endif
#endif // OPENSSL_HEADER_EC_INTERNAL_H