17cf2cb1d2
Most C standard library functions are undefined if passed NULL, even when the corresponding length is zero. This gives them (and, in turn, all functions which call them) surprising behavior on empty arrays. Some compilers will miscompile code due to this rule. See also https://www.imperialviolet.org/2016/06/26/nonnull.html Add OPENSSL_memcpy, etc., wrappers which avoid this problem. BUG=23 Change-Id: I95f42b23e92945af0e681264fffaf578e7f8465e Reviewed-on: https://boringssl-review.googlesource.com/12928 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
539 lines
15 KiB
C
539 lines
15 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/base64.h>
|
|
#include <openssl/bio.h>
|
|
#include <openssl/buffer.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "../../crypto/internal.h"
|
|
|
|
|
|
#define B64_BLOCK_SIZE 1024
|
|
#define B64_BLOCK_SIZE2 768
|
|
#define B64_NONE 0
|
|
#define B64_ENCODE 1
|
|
#define B64_DECODE 2
|
|
#define EVP_ENCODE_LENGTH(l) (((l+2)/3*4)+(l/48+1)*2+80)
|
|
|
|
typedef struct b64_struct {
|
|
int buf_len;
|
|
int buf_off;
|
|
int tmp_len; /* used to find the start when decoding */
|
|
int tmp_nl; /* If true, scan until '\n' */
|
|
int encode;
|
|
int start; /* have we started decoding yet? */
|
|
int cont; /* <= 0 when finished */
|
|
EVP_ENCODE_CTX base64;
|
|
char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10];
|
|
char tmp[B64_BLOCK_SIZE];
|
|
} BIO_B64_CTX;
|
|
|
|
static int b64_new(BIO *bio) {
|
|
BIO_B64_CTX *ctx;
|
|
|
|
ctx = OPENSSL_malloc(sizeof(*ctx));
|
|
if (ctx == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_memset(ctx, 0, sizeof(*ctx));
|
|
|
|
ctx->cont = 1;
|
|
ctx->start = 1;
|
|
|
|
bio->init = 1;
|
|
bio->ptr = (char *)ctx;
|
|
return 1;
|
|
}
|
|
|
|
static int b64_free(BIO *bio) {
|
|
if (bio == NULL) {
|
|
return 0;
|
|
}
|
|
OPENSSL_free(bio->ptr);
|
|
bio->ptr = NULL;
|
|
bio->init = 0;
|
|
bio->flags = 0;
|
|
return 1;
|
|
}
|
|
|
|
static int b64_read(BIO *b, char *out, int outl) {
|
|
int ret = 0, i, ii, j, k, x, n, num, ret_code = 0;
|
|
BIO_B64_CTX *ctx;
|
|
uint8_t *p, *q;
|
|
|
|
if (out == NULL) {
|
|
return 0;
|
|
}
|
|
ctx = (BIO_B64_CTX *) b->ptr;
|
|
|
|
if (ctx == NULL || b->next_bio == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
BIO_clear_retry_flags(b);
|
|
|
|
if (ctx->encode != B64_DECODE) {
|
|
ctx->encode = B64_DECODE;
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
EVP_DecodeInit(&ctx->base64);
|
|
}
|
|
|
|
/* First check if there are bytes decoded/encoded */
|
|
if (ctx->buf_len > 0) {
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
i = ctx->buf_len - ctx->buf_off;
|
|
if (i > outl) {
|
|
i = outl;
|
|
}
|
|
assert(ctx->buf_off + i < (int)sizeof(ctx->buf));
|
|
OPENSSL_memcpy(out, &ctx->buf[ctx->buf_off], i);
|
|
ret = i;
|
|
out += i;
|
|
outl -= i;
|
|
ctx->buf_off += i;
|
|
if (ctx->buf_len == ctx->buf_off) {
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
}
|
|
|
|
/* At this point, we have room of outl bytes and an empty buffer, so we
|
|
* should read in some more. */
|
|
|
|
ret_code = 0;
|
|
while (outl > 0) {
|
|
if (ctx->cont <= 0) {
|
|
break;
|
|
}
|
|
|
|
i = BIO_read(b->next_bio, &(ctx->tmp[ctx->tmp_len]),
|
|
B64_BLOCK_SIZE - ctx->tmp_len);
|
|
|
|
if (i <= 0) {
|
|
ret_code = i;
|
|
|
|
/* Should we continue next time we are called? */
|
|
if (!BIO_should_retry(b->next_bio)) {
|
|
ctx->cont = i;
|
|
/* If buffer empty break */
|
|
if (ctx->tmp_len == 0) {
|
|
break;
|
|
} else {
|
|
/* Fall through and process what we have */
|
|
i = 0;
|
|
}
|
|
} else {
|
|
/* else we retry and add more data to buffer */
|
|
break;
|
|
}
|
|
}
|
|
i += ctx->tmp_len;
|
|
ctx->tmp_len = i;
|
|
|
|
/* We need to scan, a line at a time until we have a valid line if we are
|
|
* starting. */
|
|
if (ctx->start && (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL))) {
|
|
/* ctx->start = 1; */
|
|
ctx->tmp_len = 0;
|
|
} else if (ctx->start) {
|
|
q = p = (uint8_t *)ctx->tmp;
|
|
num = 0;
|
|
for (j = 0; j < i; j++) {
|
|
if (*(q++) != '\n') {
|
|
continue;
|
|
}
|
|
|
|
/* due to a previous very long line, we need to keep on scanning for a
|
|
* '\n' before we even start looking for base64 encoded stuff. */
|
|
if (ctx->tmp_nl) {
|
|
p = q;
|
|
ctx->tmp_nl = 0;
|
|
continue;
|
|
}
|
|
|
|
k = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &num, p,
|
|
q - p);
|
|
|
|
if (k <= 0 && num == 0 && ctx->start) {
|
|
EVP_DecodeInit(&ctx->base64);
|
|
} else {
|
|
if (p != (uint8_t *)&(ctx->tmp[0])) {
|
|
i -= (p - (uint8_t *)&(ctx->tmp[0]));
|
|
for (x = 0; x < i; x++) {
|
|
ctx->tmp[x] = p[x];
|
|
}
|
|
}
|
|
EVP_DecodeInit(&ctx->base64);
|
|
ctx->start = 0;
|
|
break;
|
|
}
|
|
p = q;
|
|
}
|
|
|
|
/* we fell off the end without starting */
|
|
if (j == i && num == 0) {
|
|
/* Is this is one long chunk?, if so, keep on reading until a new
|
|
* line. */
|
|
if (p == (uint8_t *)&(ctx->tmp[0])) {
|
|
/* Check buffer full */
|
|
if (i == B64_BLOCK_SIZE) {
|
|
ctx->tmp_nl = 1;
|
|
ctx->tmp_len = 0;
|
|
}
|
|
} else if (p != q) { /* finished on a '\n' */
|
|
n = q - p;
|
|
for (ii = 0; ii < n; ii++) {
|
|
ctx->tmp[ii] = p[ii];
|
|
}
|
|
ctx->tmp_len = n;
|
|
}
|
|
/* else finished on a '\n' */
|
|
continue;
|
|
} else {
|
|
ctx->tmp_len = 0;
|
|
}
|
|
} else if (i < B64_BLOCK_SIZE && ctx->cont > 0) {
|
|
/* If buffer isn't full and we can retry then restart to read in more
|
|
* data. */
|
|
continue;
|
|
}
|
|
|
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
|
|
int z, jj;
|
|
|
|
jj = i & ~3; /* process per 4 */
|
|
z = EVP_DecodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, jj);
|
|
if (jj > 2) {
|
|
if (ctx->tmp[jj - 1] == '=') {
|
|
z--;
|
|
if (ctx->tmp[jj - 2] == '=') {
|
|
z--;
|
|
}
|
|
}
|
|
}
|
|
/* z is now number of output bytes and jj is the number consumed. */
|
|
if (jj != i) {
|
|
OPENSSL_memmove(ctx->tmp, &ctx->tmp[jj], i - jj);
|
|
ctx->tmp_len = i - jj;
|
|
}
|
|
ctx->buf_len = 0;
|
|
if (z > 0) {
|
|
ctx->buf_len = z;
|
|
}
|
|
i = z;
|
|
} else {
|
|
i = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf,
|
|
&ctx->buf_len, (uint8_t *)ctx->tmp, i);
|
|
ctx->tmp_len = 0;
|
|
}
|
|
ctx->buf_off = 0;
|
|
if (i < 0) {
|
|
ret_code = 0;
|
|
ctx->buf_len = 0;
|
|
break;
|
|
}
|
|
|
|
if (ctx->buf_len <= outl) {
|
|
i = ctx->buf_len;
|
|
} else {
|
|
i = outl;
|
|
}
|
|
|
|
OPENSSL_memcpy(out, ctx->buf, i);
|
|
ret += i;
|
|
ctx->buf_off = i;
|
|
if (ctx->buf_off == ctx->buf_len) {
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
outl -= i;
|
|
out += i;
|
|
}
|
|
|
|
BIO_copy_next_retry(b);
|
|
return ret == 0 ? ret_code : ret;
|
|
}
|
|
|
|
static int b64_write(BIO *b, const char *in, int inl) {
|
|
int ret = 0, n, i;
|
|
BIO_B64_CTX *ctx;
|
|
|
|
ctx = (BIO_B64_CTX *)b->ptr;
|
|
BIO_clear_retry_flags(b);
|
|
|
|
if (ctx->encode != B64_ENCODE) {
|
|
ctx->encode = B64_ENCODE;
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
EVP_EncodeInit(&(ctx->base64));
|
|
}
|
|
|
|
assert(ctx->buf_off < (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
|
|
n = ctx->buf_len - ctx->buf_off;
|
|
while (n > 0) {
|
|
i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
|
|
if (i <= 0) {
|
|
BIO_copy_next_retry(b);
|
|
return i;
|
|
}
|
|
assert(i <= n);
|
|
ctx->buf_off += i;
|
|
assert(ctx->buf_off <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
n -= i;
|
|
}
|
|
|
|
/* at this point all pending data has been written. */
|
|
ctx->buf_off = 0;
|
|
ctx->buf_len = 0;
|
|
|
|
if (in == NULL || inl <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (inl > 0) {
|
|
n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl;
|
|
|
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
|
|
if (ctx->tmp_len > 0) {
|
|
assert(ctx->tmp_len <= 3);
|
|
n = 3 - ctx->tmp_len;
|
|
/* There's a theoretical possibility of this. */
|
|
if (n > inl) {
|
|
n = inl;
|
|
}
|
|
OPENSSL_memcpy(&(ctx->tmp[ctx->tmp_len]), in, n);
|
|
ctx->tmp_len += n;
|
|
ret += n;
|
|
if (ctx->tmp_len < 3) {
|
|
break;
|
|
}
|
|
ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp,
|
|
ctx->tmp_len);
|
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
|
|
/* Since we're now done using the temporary buffer, the length should
|
|
* be zeroed. */
|
|
ctx->tmp_len = 0;
|
|
} else {
|
|
if (n < 3) {
|
|
OPENSSL_memcpy(ctx->tmp, in, n);
|
|
ctx->tmp_len = n;
|
|
ret += n;
|
|
break;
|
|
}
|
|
n -= n % 3;
|
|
ctx->buf_len =
|
|
EVP_EncodeBlock((uint8_t *)ctx->buf, (const uint8_t *)in, n);
|
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
ret += n;
|
|
}
|
|
} else {
|
|
EVP_EncodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &ctx->buf_len,
|
|
(uint8_t *)in, n);
|
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
ret += n;
|
|
}
|
|
inl -= n;
|
|
in += n;
|
|
|
|
ctx->buf_off = 0;
|
|
n = ctx->buf_len;
|
|
|
|
while (n > 0) {
|
|
i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
|
|
if (i <= 0) {
|
|
BIO_copy_next_retry(b);
|
|
return ret == 0 ? i : ret;
|
|
}
|
|
assert(i <= n);
|
|
n -= i;
|
|
ctx->buf_off += i;
|
|
assert(ctx->buf_off <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
}
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) {
|
|
BIO_B64_CTX *ctx;
|
|
long ret = 1;
|
|
int i;
|
|
|
|
ctx = (BIO_B64_CTX *)b->ptr;
|
|
|
|
switch (cmd) {
|
|
case BIO_CTRL_RESET:
|
|
ctx->cont = 1;
|
|
ctx->start = 1;
|
|
ctx->encode = B64_NONE;
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
|
|
case BIO_CTRL_EOF: /* More to read */
|
|
if (ctx->cont <= 0) {
|
|
ret = 1;
|
|
} else {
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
}
|
|
break;
|
|
|
|
case BIO_CTRL_WPENDING: /* More to write in buffer */
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
ret = ctx->buf_len - ctx->buf_off;
|
|
if ((ret == 0) && (ctx->encode != B64_NONE) && (ctx->base64.data_used != 0)) {
|
|
ret = 1;
|
|
} else if (ret <= 0) {
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
}
|
|
break;
|
|
|
|
case BIO_CTRL_PENDING: /* More to read in buffer */
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
ret = ctx->buf_len - ctx->buf_off;
|
|
if (ret <= 0) {
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
}
|
|
break;
|
|
|
|
case BIO_CTRL_FLUSH:
|
|
/* do a final write */
|
|
again:
|
|
while (ctx->buf_len != ctx->buf_off) {
|
|
i = b64_write(b, NULL, 0);
|
|
if (i < 0) {
|
|
return i;
|
|
}
|
|
}
|
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
|
|
if (ctx->tmp_len != 0) {
|
|
ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf,
|
|
(uint8_t *)ctx->tmp, ctx->tmp_len);
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
goto again;
|
|
}
|
|
} else if (ctx->encode != B64_NONE && ctx->base64.data_used != 0) {
|
|
ctx->buf_off = 0;
|
|
EVP_EncodeFinal(&(ctx->base64), (uint8_t *)ctx->buf, &(ctx->buf_len));
|
|
/* push out the bytes */
|
|
goto again;
|
|
}
|
|
/* Finally flush the underlying BIO */
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
|
|
case BIO_C_DO_STATE_MACHINE:
|
|
BIO_clear_retry_flags(b);
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
BIO_copy_next_retry(b);
|
|
break;
|
|
|
|
case BIO_CTRL_INFO:
|
|
case BIO_CTRL_GET:
|
|
case BIO_CTRL_SET:
|
|
default:
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb fp) {
|
|
long ret = 1;
|
|
|
|
if (b->next_bio == NULL) {
|
|
return 0;
|
|
}
|
|
switch (cmd) {
|
|
default:
|
|
ret = BIO_callback_ctrl(b->next_bio, cmd, fp);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int b64_puts(BIO *b, const char *str) {
|
|
return b64_write(b, str, strlen(str));
|
|
}
|
|
|
|
static const BIO_METHOD b64_method = {
|
|
BIO_TYPE_BASE64, "base64 encoding", b64_write, b64_read, b64_puts,
|
|
NULL /* gets */, b64_ctrl, b64_new, b64_free, b64_callback_ctrl,
|
|
};
|
|
|
|
const BIO_METHOD *BIO_f_base64(void) { return &b64_method; }
|