You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

227 lines
9.7 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #ifndef OPENSSL_HEADER_OBJ_H
  57. #define OPENSSL_HEADER_OBJ_H
  58. #include <openssl/base.h>
  59. #include <openssl/bytestring.h>
  60. #include <openssl/nid.h>
  61. #if defined(__cplusplus)
  62. extern "C" {
  63. #endif
  64. /* The objects library deals with the registration and indexing of ASN.1 object
  65. * identifiers. These values are often written as a dotted sequence of numbers,
  66. * e.g. 1.2.840.113549.1.9.16.3.9.
  67. *
  68. * Internally, OpenSSL likes to deal with these values by numbering them with
  69. * numbers called "nids". OpenSSL has a large, built-in database of common
  70. * object identifiers and also has both short and long names for them.
  71. *
  72. * This library provides functions for translating between object identifiers,
  73. * nids, short names and long names.
  74. *
  75. * The nid values should not be used outside of a single process: they are not
  76. * stable identifiers. */
  77. /* Basic operations. */
  78. /* OBJ_dup returns a duplicate copy of |obj| or NULL on allocation failure. */
  79. OPENSSL_EXPORT ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *obj);
  80. /* OBJ_cmp returns a value less than, equal to or greater than zero if |a| is
  81. * less than, equal to or greater than |b|, respectively. */
  82. OPENSSL_EXPORT int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b);
  83. /* Looking up nids. */
  84. /* OBJ_obj2nid returns the nid corresponding to |obj|, or |NID_undef| if no
  85. * such object is known. */
  86. OPENSSL_EXPORT int OBJ_obj2nid(const ASN1_OBJECT *obj);
  87. /* OBJ_cbs2nid returns the nid corresponding to the DER data in |cbs|, or
  88. * |NID_undef| if no such object is known. */
  89. OPENSSL_EXPORT int OBJ_cbs2nid(const CBS *cbs);
  90. /* OBJ_sn2nid returns the nid corresponding to |short_name|, or |NID_undef| if
  91. * no such short name is known. */
  92. OPENSSL_EXPORT int OBJ_sn2nid(const char *short_name);
  93. /* OBJ_ln2nid returns the nid corresponding to |long_name|, or |NID_undef| if
  94. * no such long name is known. */
  95. OPENSSL_EXPORT int OBJ_ln2nid(const char *long_name);
  96. /* OBJ_txt2nid returns the nid corresponding to |s|, which may be a short name,
  97. * long name, or an ASCII string containing a dotted sequence of numbers. It
  98. * returns the nid or NID_undef if unknown. */
  99. OPENSSL_EXPORT int OBJ_txt2nid(const char *s);
  100. /* Getting information about nids. */
  101. /* OBJ_nid2obj returns the ASN1_OBJECT corresponding to |nid|, or NULL if |nid|
  102. * is unknown. */
  103. OPENSSL_EXPORT const ASN1_OBJECT *OBJ_nid2obj(int nid);
  104. /* OBJ_nid2sn returns the short name for |nid|, or NULL if |nid| is unknown. */
  105. OPENSSL_EXPORT const char *OBJ_nid2sn(int nid);
  106. /* OBJ_nid2ln returns the long name for |nid|, or NULL if |nid| is unknown. */
  107. OPENSSL_EXPORT const char *OBJ_nid2ln(int nid);
  108. /* OBJ_nid2cbb writes |nid| as an ASN.1 OBJECT IDENTIFIER to |out|. It returns
  109. * one on success or zero otherwise. */
  110. OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid);
  111. /* Dealing with textual representations of object identifiers. */
  112. /* OBJ_txt2obj returns an ASN1_OBJECT for the textual representation in |s|.
  113. * If |dont_search_names| is zero, then |s| will be matched against the long
  114. * and short names of a known objects to find a match. Otherwise |s| must
  115. * contain an ASCII string with a dotted sequence of numbers. The resulting
  116. * object need not be previously known. It returns a freshly allocated
  117. * |ASN1_OBJECT| or NULL on error. */
  118. OPENSSL_EXPORT ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names);
  119. /* OBJ_obj2txt converts |obj| to a textual representation. If
  120. * |always_return_oid| is zero then |obj| will be matched against known objects
  121. * and the long (preferably) or short name will be used if found. Otherwise
  122. * |obj| will be converted into a dotted sequence of integers. If |out| is not
  123. * NULL, then at most |out_len| bytes of the textual form will be written
  124. * there. If |out_len| is at least one, then string written to |out| will
  125. * always be NUL terminated. It returns the number of characters that could
  126. * have been written, not including the final NUL, or -1 on error. */
  127. OPENSSL_EXPORT int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
  128. int always_return_oid);
  129. /* Adding objects at runtime. */
  130. /* OBJ_create adds a known object and returns the nid of the new object, or
  131. * NID_undef on error. */
  132. OPENSSL_EXPORT int OBJ_create(const char *oid, const char *short_name,
  133. const char *long_name);
  134. /* Handling signature algorithm identifiers.
  135. *
  136. * Some NIDs (e.g. sha256WithRSAEncryption) specify both a digest algorithm and
  137. * a public key algorithm. The following functions map between pairs of digest
  138. * and public-key algorithms and the NIDs that specify their combination.
  139. *
  140. * Sometimes the combination NID leaves the digest unspecified (e.g.
  141. * rsassaPss). In these cases, the digest NID is |NID_undef|. */
  142. /* OBJ_find_sigid_algs finds the digest and public-key NIDs that correspond to
  143. * the signing algorithm |sign_nid|. If successful, it sets |*out_digest_nid|
  144. * and |*out_pkey_nid| and returns one. Otherwise it returns zero. Any of
  145. * |out_digest_nid| or |out_pkey_nid| can be NULL if the caller doesn't need
  146. * that output value. */
  147. OPENSSL_EXPORT int OBJ_find_sigid_algs(int sign_nid, int *out_digest_nid,
  148. int *out_pkey_nid);
  149. /* OBJ_find_sigid_by_algs finds the signature NID that corresponds to the
  150. * combination of |digest_nid| and |pkey_nid|. If success, it sets
  151. * |*out_sign_nid| and returns one. Otherwise it returns zero. The
  152. * |out_sign_nid| argument can be NULL if the caller only wishes to learn
  153. * whether the combination is valid. */
  154. OPENSSL_EXPORT int OBJ_find_sigid_by_algs(int *out_sign_nid, int digest_nid,
  155. int pkey_nid);
  156. /* Deprecated functions. */
  157. typedef struct obj_name_st {
  158. int type;
  159. int alias;
  160. const char *name;
  161. const char *data;
  162. } OBJ_NAME;
  163. #define OBJ_NAME_TYPE_MD_METH 1
  164. #define OBJ_NAME_TYPE_CIPHER_METH 2
  165. /* OBJ_NAME_do_all_sorted calls |callback| zero or more times, each time with
  166. * the name of a different primitive. If |type| is |OBJ_NAME_TYPE_MD_METH| then
  167. * the primitives will be hash functions, alternatively if |type| is
  168. * |OBJ_NAME_TYPE_CIPHER_METH| then the primitives will be ciphers or cipher
  169. * modes.
  170. *
  171. * This function is ill-specified and should never be used. */
  172. OPENSSL_EXPORT void OBJ_NAME_do_all_sorted(
  173. int type, void (*callback)(const OBJ_NAME *, void *arg), void *arg);
  174. /* OBJ_NAME_do_all calls |OBJ_NAME_do_all_sorted|. */
  175. OPENSSL_EXPORT void OBJ_NAME_do_all(int type, void (*callback)(const OBJ_NAME *,
  176. void *arg),
  177. void *arg);
  178. #if defined(__cplusplus)
  179. } /* extern C */
  180. #endif
  181. #define OBJ_R_UNKNOWN_NID 100
  182. #endif /* OPENSSL_HEADER_OBJ_H */