boringssl/tool/speed.cc
Brian Smith dc94b54708 Clean up use of Windows Platform SDK headers.
Define WIN32_LEAN_AND_MEAN before including Windows Platform SDK
headers to preempt naming conflicts and to make the build faster. Avoid
including those headers in BoringSSL headers. Document that Platform
SDK 8.1 or later is required on Windows.

Change-Id: I907ada21dc722527ea37e839c71c5157455a7003
Reviewed-on: https://boringssl-review.googlesource.com/3100
Reviewed-by: Adam Langley <agl@google.com>
2015-01-28 20:36:49 +00:00

334 lines
9.8 KiB
C++

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <string>
#include <functional>
#include <memory>
#include <vector>
#include <stdint.h>
#include <time.h>
#include <openssl/aead.h>
#include <openssl/bio.h>
#include <openssl/digest.h>
#include <openssl/obj.h>
#include <openssl/rsa.h>
#if defined(OPENSSL_WINDOWS)
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#elif defined(OPENSSL_APPLE)
#include <sys/time.h>
#endif
extern "C" {
// These values are DER encoded, RSA private keys.
extern const uint8_t kDERRSAPrivate2048[];
extern size_t kDERRSAPrivate2048Len;
extern const uint8_t kDERRSAPrivate4096[];
extern size_t kDERRSAPrivate4096Len;
}
// TimeResults represents the results of benchmarking a function.
struct TimeResults {
// num_calls is the number of function calls done in the time period.
unsigned num_calls;
// us is the number of microseconds that elapsed in the time period.
unsigned us;
void Print(const std::string &description) {
printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
description.c_str(), us,
(static_cast<double>(num_calls) / us) * 1000000);
}
void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
num_calls, description.c_str(), us,
(static_cast<double>(num_calls) / us) * 1000000,
static_cast<double>(bytes_per_call * num_calls) / us);
}
};
#if defined(OPENSSL_WINDOWS)
static uint64_t time_now() { return GetTickCount64() * 1000; }
#elif defined(OPENSSL_APPLE)
static uint64_t time_now() {
struct timeval tv;
uint64_t ret;
gettimeofday(&tv, NULL);
ret = tv.tv_sec;
ret *= 1000000;
ret += tv.tv_usec;
return ret;
}
#else
static uint64_t time_now() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
uint64_t ret = ts.tv_sec;
ret *= 1000000;
ret += ts.tv_nsec / 1000;
return ret;
}
#endif
static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
// kTotalMS is the total amount of time that we'll aim to measure a function
// for.
static const uint64_t kTotalUS = 3000000;
uint64_t start = time_now(), now, delta;
unsigned done = 0, iterations_between_time_checks;
if (!func()) {
return false;
}
now = time_now();
delta = now - start;
if (delta == 0) {
iterations_between_time_checks = 250;
} else {
// Aim for about 100ms between time checks.
iterations_between_time_checks =
static_cast<double>(100000) / static_cast<double>(delta);
if (iterations_between_time_checks > 1000) {
iterations_between_time_checks = 1000;
} else if (iterations_between_time_checks < 1) {
iterations_between_time_checks = 1;
}
}
for (;;) {
for (unsigned i = 0; i < iterations_between_time_checks; i++) {
if (!func()) {
return false;
}
done++;
}
now = time_now();
if (now - start > kTotalUS) {
break;
}
}
results->us = now - start;
results->num_calls = done;
return true;
}
static bool SpeedRSA(const std::string& key_name, RSA *key) {
TimeResults results;
std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
const uint8_t fake_sha256_hash[32] = {0};
unsigned sig_len;
if (!TimeFunction(&results,
[key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
sig.get(), &sig_len, key);
})) {
fprintf(stderr, "RSA_sign failed.\n");
BIO_print_errors_fp(stderr);
return false;
}
results.Print(key_name + " signing");
if (!TimeFunction(&results,
[key, &fake_sha256_hash, &sig, sig_len]() -> bool {
return RSA_verify(NID_sha256, fake_sha256_hash,
sizeof(fake_sha256_hash), sig.get(), sig_len, key);
})) {
fprintf(stderr, "RSA_verify failed.\n");
BIO_print_errors_fp(stderr);
return false;
}
results.Print(key_name + " verify");
return true;
}
template<typename T>
struct free_functor {
void operator()(T* ptr) {
free(ptr);
}
};
#if defined(OPENSSL_WINDOWS)
uint8_t *AllocAligned(size_t size) {
void *ptr = malloc(size);
if (ptr == NULL) {
abort();
}
return static_cast<uint8_t*>(ptr);
}
#else
uint8_t *AllocAligned(size_t size) {
void *ptr;
if (posix_memalign(&ptr, 64, size)) {
abort();
}
return static_cast<uint8_t*>(ptr);
}
#endif
static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
size_t chunk_len, size_t ad_len) {
EVP_AEAD_CTX ctx;
const size_t key_len = EVP_AEAD_key_length(aead);
const size_t nonce_len = EVP_AEAD_nonce_length(aead);
const size_t overhead_len = EVP_AEAD_max_overhead(aead);
std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
memset(key.get(), 0, key_len);
std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
memset(nonce.get(), 0, nonce_len);
std::unique_ptr<uint8_t, free_functor<uint8_t>> in(AllocAligned(chunk_len));
memset(in.get(), 0, chunk_len);
std::unique_ptr<uint8_t, free_functor<uint8_t>> out(
AllocAligned(chunk_len + overhead_len));
memset(out.get(), 0, chunk_len + overhead_len);
std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
memset(ad.get(), 0, ad_len);
if (!EVP_AEAD_CTX_init(&ctx, aead, key.get(), key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) {
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
BIO_print_errors_fp(stderr);
return false;
}
TimeResults results;
if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, &in,
&out, &ctx, &nonce, &ad]() -> bool {
size_t out_len;
return EVP_AEAD_CTX_seal(
&ctx, out.get(), &out_len, chunk_len + overhead_len, nonce.get(),
nonce_len, in.get(), chunk_len, ad.get(), ad_len);
})) {
fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
BIO_print_errors_fp(stderr);
return false;
}
results.PrintWithBytes(name + " seal", chunk_len);
EVP_AEAD_CTX_cleanup(&ctx);
return true;
}
static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
size_t ad_len) {
return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len) &&
SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len) &&
SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len);
}
static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
size_t chunk_len) {
EVP_MD_CTX *ctx = EVP_MD_CTX_create();
uint8_t scratch[8192];
if (chunk_len > sizeof(scratch)) {
return false;
}
TimeResults results;
if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned int md_len;
return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
EVP_DigestUpdate(ctx, scratch, chunk_len) &&
EVP_DigestFinal_ex(ctx, digest, &md_len);
})) {
fprintf(stderr, "EVP_DigestInit_ex failed.\n");
BIO_print_errors_fp(stderr);
return false;
}
results.PrintWithBytes(name, chunk_len);
EVP_MD_CTX_destroy(ctx);
return true;
}
static bool SpeedHash(const EVP_MD *md, const std::string &name) {
return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
SpeedHashChunk(md, name + " (256 bytes)", 256) &&
SpeedHashChunk(md, name + " (8192 bytes)", 8192);
}
bool Speed(const std::vector<std::string> &args) {
const uint8_t *inp;
RSA *key = NULL;
inp = kDERRSAPrivate2048;
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) {
fprintf(stderr, "Failed to parse RSA key.\n");
BIO_print_errors_fp(stderr);
return false;
}
if (!SpeedRSA("RSA 2048", key)) {
return false;
}
RSA_free(key);
key = NULL;
inp = kDERRSAPrivate4096;
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) {
fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
BIO_print_errors_fp(stderr);
return 1;
}
if (!SpeedRSA("RSA 4096", key)) {
return false;
}
RSA_free(key);
// kTLSADLen is the number of bytes of additional data that TLS passes to
// AEADs.
static const size_t kTLSADLen = 13;
// kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
// These are AEADs that weren't originally defined as AEADs, but which we use
// via the AEAD interface. In order for that to work, they have some TLS
// knowledge in them and construct a couple of the AD bytes internally.
static const size_t kLegacyADLen = kTLSADLen - 2;
if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen) ||
!SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen) ||
!SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen) ||
!SpeedAEAD(EVP_aead_rc4_md5_tls(), "RC4-MD5", kLegacyADLen) ||
!SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen) ||
!SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen) ||
!SpeedHash(EVP_sha1(), "SHA-1") ||
!SpeedHash(EVP_sha256(), "SHA-256") ||
!SpeedHash(EVP_sha512(), "SHA-512")) {
return false;
}
return 0;
}