boringssl/crypto/bio/bio_test.c
Håvard Molland ce5be4bd5c Add zero copy read and write api for bio pairs.
Also add functionality for setting external buffers to give the
caller better control of the buffers. This is typical needed if OS
sockets can outlive the bio pair.

Change-Id: I500f0c522011ce76e9a9bce5d7b43c93d9d11457
2014-11-18 14:06:46 -08:00

361 lines
10 KiB
C

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 201410L
#endif
#include <openssl/base.h>
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#else
#include <io.h>
#include <WinSock2.h>
#include <WS2tcpip.h>
#endif
#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#define MIN(a, b) ((a < b) ? a : b)
#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) {
return close(sock);
}
static void print_socket_error(const char *func) {
perror(func);
}
#else
static void print_socket_error(const char *func) {
fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif
static int test_socket_connect(void) {
int listening_sock = socket(AF_INET, SOCK_STREAM, 0);
int sock;
struct sockaddr_in sin;
socklen_t sockaddr_len = sizeof(sin);
static const char kTestMessage[] = "test";
char hostname[80], buf[5];
BIO *bio;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
print_socket_error("inet_pton");
return 0;
}
if (bind(listening_sock, (struct sockaddr *)&sin, sizeof(sin)) != 0) {
print_socket_error("bind");
return 0;
}
if (listen(listening_sock, 1)) {
print_socket_error("listen");
return 0;
}
if (getsockname(listening_sock, (struct sockaddr *)&sin, &sockaddr_len) ||
sockaddr_len != sizeof(sin)) {
print_socket_error("getsockname");
return 0;
}
BIO_snprintf(hostname, sizeof(hostname), "%s:%d", "127.0.0.1",
ntohs(sin.sin_port));
bio = BIO_new_connect(hostname);
if (!bio) {
fprintf(stderr, "BIO_new_connect failed.\n");
return 0;
}
if (BIO_write(bio, kTestMessage, sizeof(kTestMessage)) !=
sizeof(kTestMessage)) {
fprintf(stderr, "BIO_write failed.\n");
BIO_print_errors_fp(stderr);
return 0;
}
sock = accept(listening_sock, (struct sockaddr *) &sin, &sockaddr_len);
if (sock < 0) {
print_socket_error("accept");
return 0;
}
if (recv(sock, buf, sizeof(buf), 0) != sizeof(kTestMessage)) {
print_socket_error("read");
return 0;
}
if (memcmp(buf, kTestMessage, sizeof(kTestMessage))) {
return 0;
}
closesocket(sock);
closesocket(listening_sock);
BIO_free(bio);
return 1;
}
/* bio_read_zero_copy_wrapper is a wrapper around the zero-copy APIs to make
* testing easier. */
static size_t bio_read_zero_copy_wrapper(BIO* bio, void* data, size_t len) {
uint8_t* read_buf;
size_t read_buf_offset;
size_t available_bytes;
size_t len_read = 0;
do {
if (!BIO_zero_copy_get_read_buf(bio, &read_buf, &read_buf_offset,
&available_bytes)) {
return 0;
}
available_bytes = MIN(available_bytes, len - len_read);
memmove(data + len_read, read_buf + read_buf_offset, available_bytes);
BIO_zero_copy_get_read_buf_done(bio, available_bytes);
len_read += available_bytes;
} while (len - len_read > 0 && available_bytes > 0);
return len_read;
}
/* bio_write_zero_copy_wrapper is a wrapper around the zero-copy APIs to make
* testing easier. */
static size_t bio_write_zero_copy_wrapper(BIO* bio, const void* data,
size_t len) {
uint8_t* write_buf;
size_t write_buf_offset;
size_t available_bytes;
size_t len_written = 0;
do {
if (!BIO_zero_copy_get_write_buf(bio, &write_buf, &write_buf_offset,
&available_bytes)) {
return 0;
}
available_bytes = MIN(available_bytes, len - len_written);
memmove(write_buf + write_buf_offset, data + len_written, available_bytes);
BIO_zero_copy_get_write_buf_done(bio, available_bytes);
len_written += available_bytes;
} while (len - len_written > 0 && available_bytes > 0);
return len_written;
}
static int test_zero_copy_bio_pairs(void) {
/* Test read and write, especially triggering the ring buffer wrap-around.*/
BIO* bio1;
BIO* bio2;
size_t i, j;
uint8_t bio1_application_send_buffer[1024];
uint8_t bio2_application_recv_buffer[1024];
size_t total_read = 0;
size_t total_write = 0;
uint8_t* write_buf;
size_t write_buf_offset;
size_t available_bytes;
size_t bytes_left;
const size_t kLengths[] = {254, 255, 256, 257, 510, 511, 512, 513};
/* These trigger ring buffer wrap around. */
const size_t kPartialLengths[] = {0, 1, 2, 3, 128, 255, 256, 257, 511, 512};
static const size_t kBufferSize = 512;
srand(1);
for (i = 0; i < sizeof(bio1_application_send_buffer); i++) {
bio1_application_send_buffer[i] = rand() & 255;
}
/* Transfer bytes from bio1_application_send_buffer to
* bio2_application_recv_buffer in various ways. */
for (i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) {
for (j = 0; j < sizeof(kPartialLengths) / sizeof(kPartialLengths[0]); j++) {
total_write = 0;
total_read = 0;
BIO_new_bio_pair(&bio1, kBufferSize, &bio2, kBufferSize);
total_write += bio_write_zero_copy_wrapper(
bio1, bio1_application_send_buffer, kLengths[i]);
/* This tests interleaved read/write calls. Do a read between zero copy
* write calls. */
if (!BIO_zero_copy_get_write_buf(bio1, &write_buf, &write_buf_offset,
&available_bytes)) {
return 0;
}
/* Free kPartialLengths[j] bytes in the beginning of bio1 write buffer.
* This enables ring buffer wrap around for the next write. */
total_read += BIO_read(bio2, bio2_application_recv_buffer + total_read,
kPartialLengths[j]);
size_t interleaved_write_len = MIN(kPartialLengths[j], available_bytes);
/* Write the data for the interleaved write call. If the buffer becomes
* empty after a read, the write offset is normally set to 0. Check that
* this does not happen for interleaved read/write and that
* |write_buf_offset| is still valid. */
memcpy(write_buf + write_buf_offset,
bio1_application_send_buffer + total_write, interleaved_write_len);
if (BIO_zero_copy_get_write_buf_done(bio1, interleaved_write_len)) {
total_write += interleaved_write_len;
}
/* Do another write in case |write_buf_offset| was wrapped */
total_write += bio_write_zero_copy_wrapper(
bio1, bio1_application_send_buffer + total_write,
kPartialLengths[j] - interleaved_write_len);
/* Drain the rest. */
bytes_left = BIO_pending(bio2);
total_read += bio_read_zero_copy_wrapper(
bio2, bio2_application_recv_buffer + total_read, bytes_left);
BIO_free(bio1);
BIO_free(bio2);
if (total_read != total_write) {
fprintf(stderr, "Lengths not equal in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return 0;
}
if (total_read > kLengths[i] + kPartialLengths[j]) {
fprintf(stderr, "Bad lengths in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return 0;
}
if (memcmp(bio1_application_send_buffer, bio2_application_recv_buffer,
total_read) != 0) {
fprintf(stderr, "Buffers not equal in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return 0;
}
}
}
return 1;
}
static int test_printf(void) {
/* Test a short output, a very long one, and various sizes around
* 256 (the size of the buffer) to ensure edge cases are correct. */
static const size_t kLengths[] = { 5, 250, 251, 252, 253, 254, 1023 };
BIO *bio;
char string[1024];
int ret;
const uint8_t *contents;
size_t i, len;
bio = BIO_new(BIO_s_mem());
if (!bio) {
fprintf(stderr, "BIO_new failed\n");
return 0;
}
for (i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) {
if (kLengths[i] >= sizeof(string)) {
fprintf(stderr, "Bad test string length\n");
return 0;
}
memset(string, 'a', sizeof(string));
string[kLengths[i]] = '\0';
ret = BIO_printf(bio, "test %s", string);
if (ret != 5 + kLengths[i]) {
fprintf(stderr, "BIO_printf failed: %d\n", ret);
return 0;
}
if (!BIO_mem_contents(bio, &contents, &len)) {
fprintf(stderr, "BIO_mem_contents failed\n");
return 0;
}
if (len != 5 + kLengths[i] ||
strncmp((const char *)contents, "test ", 5) != 0 ||
strncmp((const char *)contents + 5, string, kLengths[i]) != 0) {
fprintf(stderr, "Contents did not match: %.*s\n", (int)len, contents);
return 0;
}
if (!BIO_reset(bio)) {
fprintf(stderr, "BIO_reset failed\n");
return 0;
}
}
BIO_free(bio);
return 1;
}
int main(void) {
#if defined(OPENSSL_WINDOWS)
WSADATA wsa_data;
WORD wsa_version;
int wsa_err;
#endif
CRYPTO_library_init();
ERR_load_crypto_strings();
#if defined(OPENSSL_WINDOWS)
/* Initialize Winsock. */
wsa_version = MAKEWORD(2, 2);
wsa_err = WSAStartup(wsa_version, &wsa_data);
if (wsa_err != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
return 1;
}
if (wsa_data.wVersion != wsa_version) {
fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
return 1;
}
#endif
if (!test_socket_connect()) {
return 1;
}
if (!test_printf()) {
return 1;
}
if (!test_zero_copy_bio_pairs()) {
return 1;
}
printf("PASS\n");
return 0;
}