32e0d10069
This introduces EC_FELEM, which is analogous to EC_SCALAR. It is used for EC_POINT's representation in the generic EC_METHOD, as well as random operations on tuned EC_METHODs that still are implemented genericly. Unlike EC_SCALAR, EC_FELEM's exact representation is awkwardly specific to the EC_METHOD, analogous to how the old values were BIGNUMs but may or may not have been in Montgomery form. This is kind of a nuisance, but no more than before. (If p224-64.c were easily convertable to Montgomery form, we could say |EC_FELEM| is always in Montgomery form. If we exposed the internal add and double implementations in each of the curves, we could give |EC_POINT| an |EC_METHOD|-specific representation and |EC_FELEM| is purely a |EC_GFp_mont_method| type. I'll leave this for later.) The generic add and doubling formulas are aligned with the formulas proved in fiat-crypto. Those only applied to a = -3, so I've proved a generic one in https://github.com/mit-plv/fiat-crypto/pull/356, in case someone uses a custom curve. The new formulas are verified, constant-time, and swap a multiply for a square. As expressed in fiat-crypto they do use more temporaries, but this seems to be fine with stack-allocated EC_FELEMs. (We can try to help the compiler later, but benchamrks below suggest this isn't necessary.) Unlike BIGNUM, EC_FELEM can be stack-allocated. It also captures the bounds in the type system and, in particular, that the width is correct, which will make it easier to select a point in constant-time in the future. (Indeed the old code did not always have the correct width. Its point formula involved halving and implemented this in variable time and variable width.) Before: Did 77274 ECDH P-256 operations in 10046087us (7692.0 ops/sec) Did 5959 ECDH P-384 operations in 10031701us (594.0 ops/sec) Did 10815 ECDSA P-384 signing operations in 10087892us (1072.1 ops/sec) Did 8976 ECDSA P-384 verify operations in 10071038us (891.3 ops/sec) Did 2600 ECDH P-521 operations in 10091688us (257.6 ops/sec) Did 4590 ECDSA P-521 signing operations in 10055195us (456.5 ops/sec) Did 3811 ECDSA P-521 verify operations in 10003574us (381.0 ops/sec) After: Did 77736 ECDH P-256 operations in 10029858us (7750.5 ops/sec) [+0.8%] Did 7519 ECDH P-384 operations in 10068076us (746.8 ops/sec) [+25.7%] Did 13335 ECDSA P-384 signing operations in 10029962us (1329.5 ops/sec) [+24.0%] Did 11021 ECDSA P-384 verify operations in 10088600us (1092.4 ops/sec) [+22.6%] Did 2912 ECDH P-521 operations in 10001325us (291.2 ops/sec) [+13.0%] Did 5150 ECDSA P-521 signing operations in 10027462us (513.6 ops/sec) [+12.5%] Did 4264 ECDSA P-521 verify operations in 10069694us (423.4 ops/sec) [+11.1%] This more than pays for removing points_make_affine previously and even speeds up ECDH P-256 slightly. (The point-on-curve check uses the generic code.) Next is to push the stack-allocating up to ec_wNAF_mul, followed by a constant-time single-point multiplication. Bug: 239 Change-Id: I44a2dff7c52522e491d0f8cffff64c4ab5cd353c Reviewed-on: https://boringssl-review.googlesource.com/27668 Reviewed-by: Adam Langley <agl@google.com>
505 lines
16 KiB
C
505 lines
16 KiB
C
/*
|
|
* Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2014, Intel Corporation. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*
|
|
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
|
|
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
|
|
* (2) University of Haifa, Israel
|
|
*
|
|
* Reference:
|
|
* S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
|
|
* 256 Bit Primes"
|
|
*/
|
|
|
|
#include <openssl/ec.h>
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/err.h>
|
|
|
|
#include "../bn/internal.h"
|
|
#include "../delocate.h"
|
|
#include "../../internal.h"
|
|
#include "internal.h"
|
|
#include "p256-x86_64.h"
|
|
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
|
|
!defined(OPENSSL_SMALL)
|
|
|
|
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
|
|
|
|
// One converted into the Montgomery domain
|
|
static const BN_ULONG ONE[P256_LIMBS] = {
|
|
TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
|
|
TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
|
|
};
|
|
|
|
// Precomputed tables for the default generator
|
|
#include "p256-x86_64-table.h"
|
|
|
|
// Recode window to a signed digit, see util-64.c for details
|
|
static unsigned booth_recode_w5(unsigned in) {
|
|
unsigned s, d;
|
|
|
|
s = ~((in >> 5) - 1);
|
|
d = (1 << 6) - in - 1;
|
|
d = (d & s) | (in & ~s);
|
|
d = (d >> 1) + (d & 1);
|
|
|
|
return (d << 1) + (s & 1);
|
|
}
|
|
|
|
static unsigned booth_recode_w7(unsigned in) {
|
|
unsigned s, d;
|
|
|
|
s = ~((in >> 7) - 1);
|
|
d = (1 << 8) - in - 1;
|
|
d = (d & s) | (in & ~s);
|
|
d = (d >> 1) + (d & 1);
|
|
|
|
return (d << 1) + (s & 1);
|
|
}
|
|
|
|
// copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
|
|
// if |move| is zero.
|
|
//
|
|
// WARNING: this breaks the usual convention of constant-time functions
|
|
// returning masks.
|
|
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
|
|
const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
|
|
BN_ULONG mask1 = ((BN_ULONG)0) - move;
|
|
BN_ULONG mask2 = ~mask1;
|
|
|
|
dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
|
|
dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
|
|
dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
|
|
dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
|
|
if (P256_LIMBS == 8) {
|
|
dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
|
|
dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
|
|
dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
|
|
dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
|
|
}
|
|
}
|
|
|
|
// is_not_zero returns one iff in != 0 and zero otherwise.
|
|
//
|
|
// WARNING: this breaks the usual convention of constant-time functions
|
|
// returning masks.
|
|
//
|
|
// (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
|
|
// (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
|
|
// )
|
|
//
|
|
// (declare-fun x () (_ BitVec 64))
|
|
//
|
|
// (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
|
|
// (check-sat)
|
|
//
|
|
// (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
|
|
// (check-sat)
|
|
//
|
|
static BN_ULONG is_not_zero(BN_ULONG in) {
|
|
in |= (0 - in);
|
|
in >>= BN_BITS2 - 1;
|
|
return in;
|
|
}
|
|
|
|
// ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p.
|
|
// That is, |r| is the modular inverse of |in| for input and output in the
|
|
// Montgomery domain.
|
|
static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],
|
|
const BN_ULONG in[P256_LIMBS]) {
|
|
/* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
|
|
ffffffff
|
|
We use FLT and used poly-2 as exponent */
|
|
BN_ULONG p2[P256_LIMBS];
|
|
BN_ULONG p4[P256_LIMBS];
|
|
BN_ULONG p8[P256_LIMBS];
|
|
BN_ULONG p16[P256_LIMBS];
|
|
BN_ULONG p32[P256_LIMBS];
|
|
BN_ULONG res[P256_LIMBS];
|
|
int i;
|
|
|
|
ecp_nistz256_sqr_mont(res, in);
|
|
ecp_nistz256_mul_mont(p2, res, in); // 3*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p2);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(p4, res, p2); // f*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p4);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(p8, res, p4); // ff*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p8);
|
|
for (i = 0; i < 7; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(p16, res, p8); // ffff*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p16);
|
|
for (i = 0; i < 15; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(p32, res, p16); // ffffffff*p
|
|
|
|
ecp_nistz256_sqr_mont(res, p32);
|
|
for (i = 0; i < 31; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, in);
|
|
|
|
for (i = 0; i < 32 * 4; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, p32);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, p32);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, p16);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
}
|
|
ecp_nistz256_mul_mont(res, res, p8);
|
|
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(res, res, p4);
|
|
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(res, res, p2);
|
|
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_sqr_mont(res, res);
|
|
ecp_nistz256_mul_mont(r, res, in);
|
|
}
|
|
|
|
// r = p * p_scalar
|
|
static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
|
|
const EC_POINT *p,
|
|
const EC_SCALAR *p_scalar) {
|
|
assert(p != NULL);
|
|
assert(p_scalar != NULL);
|
|
assert(group->field.width == P256_LIMBS);
|
|
|
|
static const unsigned kWindowSize = 5;
|
|
static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
|
|
|
|
// A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
|
|
// add no more than 63 bytes of overhead. Thus, |table| should require
|
|
// ~1599 ((96 * 16) + 63) bytes of stack space.
|
|
alignas(64) P256_POINT table[16];
|
|
uint8_t p_str[33];
|
|
OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
|
|
p_str[32] = 0;
|
|
|
|
// table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
|
|
// not stored. All other values are actually stored with an offset of -1 in
|
|
// table.
|
|
P256_POINT *row = table;
|
|
assert(group->field.width == P256_LIMBS);
|
|
OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
|
|
OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
|
|
OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));
|
|
|
|
ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
|
|
ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
|
|
ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
|
|
ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
|
|
ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
|
|
ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
|
|
ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
|
|
ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
|
|
|
|
BN_ULONG tmp[P256_LIMBS];
|
|
alignas(32) P256_POINT h;
|
|
unsigned index = 255;
|
|
unsigned wvalue = p_str[(index - 1) / 8];
|
|
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
|
|
|
ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
|
|
|
|
while (index >= 5) {
|
|
if (index != 255) {
|
|
unsigned off = (index - 1) / 8;
|
|
|
|
wvalue = p_str[off] | p_str[off + 1] << 8;
|
|
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
|
|
|
wvalue = booth_recode_w5(wvalue);
|
|
|
|
ecp_nistz256_select_w5(&h, table, wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(tmp, h.Y);
|
|
copy_conditional(h.Y, tmp, (wvalue & 1));
|
|
|
|
ecp_nistz256_point_add(r, r, &h);
|
|
}
|
|
|
|
index -= kWindowSize;
|
|
|
|
ecp_nistz256_point_double(r, r);
|
|
ecp_nistz256_point_double(r, r);
|
|
ecp_nistz256_point_double(r, r);
|
|
ecp_nistz256_point_double(r, r);
|
|
ecp_nistz256_point_double(r, r);
|
|
}
|
|
|
|
// Final window
|
|
wvalue = p_str[0];
|
|
wvalue = (wvalue << 1) & kMask;
|
|
|
|
wvalue = booth_recode_w5(wvalue);
|
|
|
|
ecp_nistz256_select_w5(&h, table, wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(tmp, h.Y);
|
|
copy_conditional(h.Y, tmp, wvalue & 1);
|
|
|
|
ecp_nistz256_point_add(r, r, &h);
|
|
}
|
|
|
|
static int ecp_nistz256_points_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const EC_SCALAR *g_scalar,
|
|
const EC_POINT *p_,
|
|
const EC_SCALAR *p_scalar, BN_CTX *ctx) {
|
|
assert((p_ != NULL) == (p_scalar != NULL));
|
|
|
|
static const unsigned kWindowSize = 7;
|
|
static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
|
|
|
|
alignas(32) union {
|
|
P256_POINT p;
|
|
P256_POINT_AFFINE a;
|
|
} t, p;
|
|
|
|
if (g_scalar != NULL) {
|
|
uint8_t p_str[33];
|
|
OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
|
|
p_str[32] = 0;
|
|
|
|
// First window
|
|
unsigned wvalue = (p_str[0] << 1) & kMask;
|
|
unsigned index = kWindowSize;
|
|
|
|
wvalue = booth_recode_w7(wvalue);
|
|
|
|
const PRECOMP256_ROW *const precomputed_table =
|
|
(const PRECOMP256_ROW *)ecp_nistz256_precomputed;
|
|
ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(p.p.Z, p.p.Y);
|
|
copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
|
|
|
|
// Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
|
|
// is infinity and |ONE| otherwise. |p| was computed from the table, so it
|
|
// is infinity iff |wvalue >> 1| is zero.
|
|
OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
|
|
copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
|
|
|
|
for (int i = 1; i < 37; i++) {
|
|
unsigned off = (index - 1) / 8;
|
|
wvalue = p_str[off] | p_str[off + 1] << 8;
|
|
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
|
index += kWindowSize;
|
|
|
|
wvalue = booth_recode_w7(wvalue);
|
|
|
|
ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(t.p.Z, t.a.Y);
|
|
copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
|
|
|
|
ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
|
|
}
|
|
}
|
|
|
|
const int p_is_infinity = g_scalar == NULL;
|
|
if (p_scalar != NULL) {
|
|
P256_POINT *out = &t.p;
|
|
if (p_is_infinity) {
|
|
out = &p.p;
|
|
}
|
|
|
|
ecp_nistz256_windowed_mul(group, out, p_, p_scalar);
|
|
if (!p_is_infinity) {
|
|
ecp_nistz256_point_add(&p.p, &p.p, out);
|
|
}
|
|
}
|
|
|
|
assert(group->field.width == P256_LIMBS);
|
|
OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG));
|
|
OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG));
|
|
OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG));
|
|
return 1;
|
|
}
|
|
|
|
static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
|
|
BIGNUM *x, BIGNUM *y) {
|
|
if (EC_POINT_is_at_infinity(group, point)) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
|
|
return 0;
|
|
}
|
|
|
|
BN_ULONG z_inv2[P256_LIMBS];
|
|
BN_ULONG z_inv3[P256_LIMBS];
|
|
assert(group->field.width == P256_LIMBS);
|
|
ecp_nistz256_mod_inverse_mont(z_inv3, point->Z.words);
|
|
ecp_nistz256_sqr_mont(z_inv2, z_inv3);
|
|
|
|
// Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate
|
|
// and then calling |ecp_nistz256_from_mont| again to convert the |y|
|
|
// coordinate below, convert the common factor |z_inv2| once now, saving one
|
|
// reduction.
|
|
ecp_nistz256_from_mont(z_inv2, z_inv2);
|
|
|
|
if (x != NULL) {
|
|
BN_ULONG x_aff[P256_LIMBS];
|
|
ecp_nistz256_mul_mont(x_aff, z_inv2, point->X.words);
|
|
if (!bn_set_words(x, x_aff, P256_LIMBS)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (y != NULL) {
|
|
BN_ULONG y_aff[P256_LIMBS];
|
|
ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
|
|
ecp_nistz256_mul_mont(y_aff, z_inv3, point->Y.words);
|
|
if (!bn_set_words(y, y_aff, P256_LIMBS)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void ecp_nistz256_inv_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
|
|
const EC_SCALAR *in) {
|
|
// table[i] stores a power of |in| corresponding to the matching enum value.
|
|
enum {
|
|
// The following indices specify the power in binary.
|
|
i_1 = 0,
|
|
i_10,
|
|
i_11,
|
|
i_101,
|
|
i_111,
|
|
i_1010,
|
|
i_1111,
|
|
i_10101,
|
|
i_101010,
|
|
i_101111,
|
|
// The following indices specify 2^N-1, or N ones in a row.
|
|
i_x6,
|
|
i_x8,
|
|
i_x16,
|
|
i_x32
|
|
};
|
|
BN_ULONG table[15][P256_LIMBS];
|
|
|
|
// https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
|
|
//
|
|
// Even though this code path spares 12 squarings, 4.5%, and 13
|
|
// multiplications, 25%, the overall sign operation is not that much faster,
|
|
// not more that 2%. Most of the performance of this function comes from the
|
|
// scalar operations.
|
|
|
|
// Pre-calculate powers.
|
|
OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
|
|
ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
|
|
|
|
ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
|
|
ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
|
|
ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
|
|
|
|
ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
|
|
ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
|
|
|
|
// Compute |in| raised to the order-2.
|
|
ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
|
|
ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
|
|
static const struct {
|
|
uint8_t p, i;
|
|
} kChain[27] = {{32, i_x32}, {6, i_101111}, {5, i_111}, {4, i_11},
|
|
{5, i_1111}, {5, i_10101}, {4, i_101}, {3, i_101},
|
|
{3, i_101}, {5, i_111}, {9, i_101111}, {6, i_1111},
|
|
{2, i_1}, {5, i_1}, {6, i_1111}, {5, i_111},
|
|
{4, i_111}, {5, i_111}, {5, i_101}, {3, i_11},
|
|
{10, i_101111}, {2, i_11}, {5, i_11}, {5, i_11},
|
|
{3, i_1}, {7, i_10101}, {6, i_1111}};
|
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
|
|
ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
|
|
ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
|
|
}
|
|
}
|
|
|
|
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
|
|
out->group_init = ec_GFp_mont_group_init;
|
|
out->group_finish = ec_GFp_mont_group_finish;
|
|
out->group_set_curve = ec_GFp_mont_group_set_curve;
|
|
out->point_get_affine_coordinates = ecp_nistz256_get_affine;
|
|
out->mul = ecp_nistz256_points_mul;
|
|
out->mul_public = ecp_nistz256_points_mul;
|
|
out->felem_mul = ec_GFp_mont_felem_mul;
|
|
out->felem_sqr = ec_GFp_mont_felem_sqr;
|
|
out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
|
|
out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
|
|
out->scalar_inv_montgomery = ecp_nistz256_inv_mod_ord;
|
|
};
|
|
|
|
#endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
|
|
!defined(OPENSSL_SMALL) */
|