boringssl/ssl/tls13_both.cc
David Benjamin e39ac8fb59 Switch BORINGSSL_INTERNAL_CXX_TYPES in favor of subclassing games.
The previous attempt around the 'struct ssl_st' compatibility mess
offended OSS-Fuzz and UBSan because one compilation unit passed a
function pointer with ssl_st* and another called it with
bssl::SSLConnection*.

Linkers don't retain such types, of course, but to silence this alert,
instead make C-visible types be separate from the implementation and
subclass the public type. This does mean we risk polluting the symbol
namespace, but hopefully the compiler is smart enough to inline the
visible struct's constructor and destructor.

Bug: 132
Change-Id: Ia75a89b3a22a202883ad671a630b72d0aeef680e
Reviewed-on: https://boringssl-review.googlesource.com/18224
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
2017-07-20 17:24:12 +00:00

667 lines
21 KiB
C++

/* Copyright (c) 2016, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/hkdf.h>
#include <openssl/mem.h>
#include <openssl/stack.h>
#include <openssl/x509.h>
#include "../crypto/internal.h"
#include "internal.h"
namespace bssl {
/* kMaxKeyUpdates is the number of consecutive KeyUpdates that will be
* processed. Without this limit an attacker could force unbounded processing
* without being able to return application data. */
static const uint8_t kMaxKeyUpdates = 32;
int tls13_handshake(SSL_HANDSHAKE *hs, int *out_early_return) {
SSL *const ssl = hs->ssl;
for (;;) {
/* Resolve the operation the handshake was waiting on. */
switch (hs->wait) {
case ssl_hs_error:
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
return -1;
case ssl_hs_flush:
case ssl_hs_flush_and_read_message: {
int ret = ssl->method->flush_flight(ssl);
if (ret <= 0) {
return ret;
}
if (hs->wait != ssl_hs_flush_and_read_message) {
break;
}
ssl->method->expect_flight(ssl);
hs->wait = ssl_hs_read_message;
SSL_FALLTHROUGH;
}
case ssl_hs_read_message: {
int ret = ssl->method->ssl_get_message(ssl);
if (ret <= 0) {
return ret;
}
break;
}
case ssl_hs_read_change_cipher_spec: {
int ret = ssl->method->read_change_cipher_spec(ssl);
if (ret <= 0) {
return ret;
}
break;
}
case ssl_hs_read_end_of_early_data: {
if (ssl->s3->hs->can_early_read) {
/* While we are processing early data, the handshake returns early. */
*out_early_return = 1;
return 1;
}
hs->wait = ssl_hs_ok;
break;
}
case ssl_hs_x509_lookup:
ssl->rwstate = SSL_X509_LOOKUP;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_channel_id_lookup:
ssl->rwstate = SSL_CHANNEL_ID_LOOKUP;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_private_key_operation:
ssl->rwstate = SSL_PRIVATE_KEY_OPERATION;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_pending_ticket:
ssl->rwstate = SSL_PENDING_TICKET;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_certificate_verify:
ssl->rwstate = SSL_CERTIFICATE_VERIFY;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_early_data_rejected:
ssl->rwstate = SSL_EARLY_DATA_REJECTED;
/* Cause |SSL_write| to start failing immediately. */
hs->can_early_write = 0;
return -1;
case ssl_hs_ok:
break;
}
/* Run the state machine again. */
hs->wait = hs->do_tls13_handshake(hs);
if (hs->wait == ssl_hs_error) {
/* Don't loop around to avoid a stray |SSL_R_SSL_HANDSHAKE_FAILURE| the
* first time around. */
return -1;
}
if (hs->wait == ssl_hs_ok) {
/* The handshake has completed. */
return 1;
}
/* Otherwise, loop to the beginning and resolve what was blocking the
* handshake. */
}
}
int tls13_get_cert_verify_signature_input(
SSL_HANDSHAKE *hs, uint8_t **out, size_t *out_len,
enum ssl_cert_verify_context_t cert_verify_context) {
ScopedCBB cbb;
if (!CBB_init(cbb.get(), 64 + 33 + 1 + 2 * EVP_MAX_MD_SIZE)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
for (size_t i = 0; i < 64; i++) {
if (!CBB_add_u8(cbb.get(), 0x20)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
}
const uint8_t *context;
size_t context_len;
if (cert_verify_context == ssl_cert_verify_server) {
/* Include the NUL byte. */
static const char kContext[] = "TLS 1.3, server CertificateVerify";
context = (const uint8_t *)kContext;
context_len = sizeof(kContext);
} else if (cert_verify_context == ssl_cert_verify_client) {
static const char kContext[] = "TLS 1.3, client CertificateVerify";
context = (const uint8_t *)kContext;
context_len = sizeof(kContext);
} else if (cert_verify_context == ssl_cert_verify_channel_id) {
static const char kContext[] = "TLS 1.3, Channel ID";
context = (const uint8_t *)kContext;
context_len = sizeof(kContext);
} else {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!CBB_add_bytes(cbb.get(), context, context_len)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
uint8_t context_hash[EVP_MAX_MD_SIZE];
size_t context_hash_len;
if (!SSL_TRANSCRIPT_get_hash(&hs->transcript, context_hash,
&context_hash_len) ||
!CBB_add_bytes(cbb.get(), context_hash, context_hash_len) ||
!CBB_finish(cbb.get(), out, out_len)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
return 1;
}
int tls13_process_certificate(SSL_HANDSHAKE *hs, int allow_anonymous) {
SSL *const ssl = hs->ssl;
CBS cbs, context, certificate_list;
CBS_init(&cbs, ssl->init_msg, ssl->init_num);
if (!CBS_get_u8_length_prefixed(&cbs, &context) ||
CBS_len(&context) != 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return 0;
}
const int retain_sha256 =
ssl->server && ssl->retain_only_sha256_of_client_certs;
int ret = 0;
EVP_PKEY *pkey = NULL;
STACK_OF(CRYPTO_BUFFER) *certs = sk_CRYPTO_BUFFER_new_null();
if (certs == NULL) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!CBS_get_u24_length_prefixed(&cbs, &certificate_list)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto err;
}
while (CBS_len(&certificate_list) > 0) {
CBS certificate, extensions;
if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate) ||
!CBS_get_u16_length_prefixed(&certificate_list, &extensions) ||
CBS_len(&certificate) == 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH);
goto err;
}
if (sk_CRYPTO_BUFFER_num(certs) == 0) {
pkey = ssl_cert_parse_pubkey(&certificate);
if (pkey == NULL) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto err;
}
/* TLS 1.3 always uses certificate keys for signing thus the correct
* keyUsage is enforced. */
if (!ssl_cert_check_digital_signature_key_usage(&certificate)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
goto err;
}
if (retain_sha256) {
/* Retain the hash of the leaf certificate if requested. */
SHA256(CBS_data(&certificate), CBS_len(&certificate),
hs->new_session->peer_sha256);
}
}
CRYPTO_BUFFER *buf =
CRYPTO_BUFFER_new_from_CBS(&certificate, ssl->ctx->pool);
if (buf == NULL ||
!sk_CRYPTO_BUFFER_push(certs, buf)) {
CRYPTO_BUFFER_free(buf);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Parse out the extensions. */
int have_status_request = 0, have_sct = 0;
CBS status_request, sct;
const SSL_EXTENSION_TYPE ext_types[] = {
{TLSEXT_TYPE_status_request, &have_status_request, &status_request},
{TLSEXT_TYPE_certificate_timestamp, &have_sct, &sct},
};
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!ssl_parse_extensions(&extensions, &alert, ext_types,
OPENSSL_ARRAY_SIZE(ext_types),
0 /* reject unknown */)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
goto err;
}
/* All Certificate extensions are parsed, but only the leaf extensions are
* stored. */
if (have_status_request) {
if (ssl->server || !ssl->ocsp_stapling_enabled) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_EXTENSION);
goto err;
}
uint8_t status_type;
CBS ocsp_response;
if (!CBS_get_u8(&status_request, &status_type) ||
status_type != TLSEXT_STATUSTYPE_ocsp ||
!CBS_get_u24_length_prefixed(&status_request, &ocsp_response) ||
CBS_len(&ocsp_response) == 0 ||
CBS_len(&status_request) != 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
goto err;
}
if (sk_CRYPTO_BUFFER_num(certs) == 1 &&
!CBS_stow(&ocsp_response, &hs->new_session->ocsp_response,
&hs->new_session->ocsp_response_length)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
goto err;
}
}
if (have_sct) {
if (ssl->server || !ssl->signed_cert_timestamps_enabled) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_EXTENSION);
goto err;
}
if (!ssl_is_sct_list_valid(&sct)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_PARSING_EXTENSION);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
goto err;
}
if (sk_CRYPTO_BUFFER_num(certs) == 1 &&
!CBS_stow(
&sct, &hs->new_session->tlsext_signed_cert_timestamp_list,
&hs->new_session->tlsext_signed_cert_timestamp_list_length)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
goto err;
}
}
}
if (CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
goto err;
}
EVP_PKEY_free(hs->peer_pubkey);
hs->peer_pubkey = pkey;
pkey = NULL;
sk_CRYPTO_BUFFER_pop_free(hs->new_session->certs, CRYPTO_BUFFER_free);
hs->new_session->certs = certs;
certs = NULL;
if (!ssl->ctx->x509_method->session_cache_objects(hs->new_session)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
goto err;
}
if (sk_CRYPTO_BUFFER_num(hs->new_session->certs) == 0) {
if (!allow_anonymous) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_CERTIFICATE_REQUIRED);
goto err;
}
/* OpenSSL returns X509_V_OK when no certificates are requested. This is
* classed by them as a bug, but it's assumed by at least NGINX. */
hs->new_session->verify_result = X509_V_OK;
/* No certificate, so nothing more to do. */
ret = 1;
goto err;
}
hs->new_session->peer_sha256_valid = retain_sha256;
ret = 1;
err:
sk_CRYPTO_BUFFER_pop_free(certs, CRYPTO_BUFFER_free);
EVP_PKEY_free(pkey);
return ret;
}
int tls13_process_certificate_verify(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (hs->peer_pubkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
CBS cbs, signature;
uint16_t signature_algorithm;
CBS_init(&cbs, ssl->init_msg, ssl->init_num);
if (!CBS_get_u16(&cbs, &signature_algorithm) ||
!CBS_get_u16_length_prefixed(&cbs, &signature) ||
CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return 0;
}
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!tls12_check_peer_sigalg(ssl, &alert, signature_algorithm)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
return 0;
}
hs->new_session->peer_signature_algorithm = signature_algorithm;
uint8_t *msg = NULL;
size_t msg_len;
if (!tls13_get_cert_verify_signature_input(
hs, &msg, &msg_len,
ssl->server ? ssl_cert_verify_client : ssl_cert_verify_server)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
UniquePtr<uint8_t> free_msg(msg);
int sig_ok =
ssl_public_key_verify(ssl, CBS_data(&signature), CBS_len(&signature),
signature_algorithm, hs->peer_pubkey, msg, msg_len);
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
sig_ok = 1;
ERR_clear_error();
#endif
if (!sig_ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
return 0;
}
return 1;
}
int tls13_process_finished(SSL_HANDSHAKE *hs, int use_saved_value) {
SSL *const ssl = hs->ssl;
uint8_t verify_data_buf[EVP_MAX_MD_SIZE];
const uint8_t *verify_data;
size_t verify_data_len;
if (use_saved_value) {
assert(ssl->server);
verify_data = hs->expected_client_finished;
verify_data_len = hs->hash_len;
} else {
if (!tls13_finished_mac(hs, verify_data_buf, &verify_data_len,
!ssl->server)) {
return 0;
}
verify_data = verify_data_buf;
}
int finished_ok =
ssl->init_num == verify_data_len &&
CRYPTO_memcmp(verify_data, ssl->init_msg, verify_data_len) == 0;
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
finished_ok = 1;
#endif
if (!finished_ok) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED);
return 0;
}
return 1;
}
int tls13_add_certificate(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
ScopedCBB cbb;
CBB body, certificate_list;
if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CERTIFICATE) ||
/* The request context is always empty in the handshake. */
!CBB_add_u8(&body, 0) ||
!CBB_add_u24_length_prefixed(&body, &certificate_list)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
if (!ssl_has_certificate(ssl)) {
return ssl_add_message_cbb(ssl, cbb.get());
}
CERT *cert = ssl->cert;
CRYPTO_BUFFER *leaf_buf = sk_CRYPTO_BUFFER_value(cert->chain, 0);
CBB leaf, extensions;
if (!CBB_add_u24_length_prefixed(&certificate_list, &leaf) ||
!CBB_add_bytes(&leaf, CRYPTO_BUFFER_data(leaf_buf),
CRYPTO_BUFFER_len(leaf_buf)) ||
!CBB_add_u16_length_prefixed(&certificate_list, &extensions)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
if (hs->scts_requested && ssl->cert->signed_cert_timestamp_list != NULL) {
CBB contents;
if (!CBB_add_u16(&extensions, TLSEXT_TYPE_certificate_timestamp) ||
!CBB_add_u16_length_prefixed(&extensions, &contents) ||
!CBB_add_bytes(
&contents,
CRYPTO_BUFFER_data(ssl->cert->signed_cert_timestamp_list),
CRYPTO_BUFFER_len(ssl->cert->signed_cert_timestamp_list)) ||
!CBB_flush(&extensions)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
}
if (hs->ocsp_stapling_requested &&
ssl->cert->ocsp_response != NULL) {
CBB contents, ocsp_response;
if (!CBB_add_u16(&extensions, TLSEXT_TYPE_status_request) ||
!CBB_add_u16_length_prefixed(&extensions, &contents) ||
!CBB_add_u8(&contents, TLSEXT_STATUSTYPE_ocsp) ||
!CBB_add_u24_length_prefixed(&contents, &ocsp_response) ||
!CBB_add_bytes(&ocsp_response,
CRYPTO_BUFFER_data(ssl->cert->ocsp_response),
CRYPTO_BUFFER_len(ssl->cert->ocsp_response)) ||
!CBB_flush(&extensions)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
}
for (size_t i = 1; i < sk_CRYPTO_BUFFER_num(cert->chain); i++) {
CRYPTO_BUFFER *cert_buf = sk_CRYPTO_BUFFER_value(cert->chain, i);
CBB child;
if (!CBB_add_u24_length_prefixed(&certificate_list, &child) ||
!CBB_add_bytes(&child, CRYPTO_BUFFER_data(cert_buf),
CRYPTO_BUFFER_len(cert_buf)) ||
!CBB_add_u16(&certificate_list, 0 /* no extensions */)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
}
return ssl_add_message_cbb(ssl, cbb.get());
}
enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
uint16_t signature_algorithm;
if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) {
return ssl_private_key_failure;
}
ScopedCBB cbb;
CBB body;
if (!ssl->method->init_message(ssl, cbb.get(), &body,
SSL3_MT_CERTIFICATE_VERIFY) ||
!CBB_add_u16(&body, signature_algorithm)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return ssl_private_key_failure;
}
/* Sign the digest. */
CBB child;
const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey);
uint8_t *sig;
size_t sig_len;
if (!CBB_add_u16_length_prefixed(&body, &child) ||
!CBB_reserve(&child, &sig, max_sig_len)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_private_key_failure;
}
uint8_t *msg = NULL;
size_t msg_len;
if (!tls13_get_cert_verify_signature_input(
hs, &msg, &msg_len,
ssl->server ? ssl_cert_verify_server : ssl_cert_verify_client)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_private_key_failure;
}
UniquePtr<uint8_t> free_msg(msg);
enum ssl_private_key_result_t sign_result = ssl_private_key_sign(
hs, sig, &sig_len, max_sig_len, signature_algorithm, msg, msg_len);
if (sign_result != ssl_private_key_success) {
return sign_result;
}
if (!CBB_did_write(&child, sig_len) ||
!ssl_add_message_cbb(ssl, cbb.get())) {
return ssl_private_key_failure;
}
return ssl_private_key_success;
}
int tls13_add_finished(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
size_t verify_data_len;
uint8_t verify_data[EVP_MAX_MD_SIZE];
if (!tls13_finished_mac(hs, verify_data, &verify_data_len, ssl->server)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED);
return 0;
}
ScopedCBB cbb;
CBB body;
if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_FINISHED) ||
!CBB_add_bytes(&body, verify_data, verify_data_len) ||
!ssl_add_message_cbb(ssl, cbb.get())) {
return 0;
}
return 1;
}
static int tls13_receive_key_update(SSL *ssl) {
CBS cbs;
uint8_t key_update_request;
CBS_init(&cbs, ssl->init_msg, ssl->init_num);
if (!CBS_get_u8(&cbs, &key_update_request) ||
CBS_len(&cbs) != 0 ||
(key_update_request != SSL_KEY_UPDATE_NOT_REQUESTED &&
key_update_request != SSL_KEY_UPDATE_REQUESTED)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return 0;
}
if (!tls13_rotate_traffic_key(ssl, evp_aead_open)) {
return 0;
}
/* Acknowledge the KeyUpdate */
if (key_update_request == SSL_KEY_UPDATE_REQUESTED &&
!ssl->s3->key_update_pending) {
ScopedCBB cbb;
CBB body;
if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_KEY_UPDATE) ||
!CBB_add_u8(&body, SSL_KEY_UPDATE_NOT_REQUESTED) ||
!ssl_add_message_cbb(ssl, cbb.get()) ||
!tls13_rotate_traffic_key(ssl, evp_aead_seal)) {
return 0;
}
/* Suppress KeyUpdate acknowledgments until this change is written to the
* wire. This prevents us from accumulating write obligations when read and
* write progress at different rates. See draft-ietf-tls-tls13-18, section
* 4.5.3. */
ssl->s3->key_update_pending = 1;
}
return 1;
}
int tls13_post_handshake(SSL *ssl) {
if (ssl->s3->tmp.message_type == SSL3_MT_KEY_UPDATE) {
ssl->s3->key_update_count++;
if (ssl->s3->key_update_count > kMaxKeyUpdates) {
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_KEY_UPDATES);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
return 0;
}
return tls13_receive_key_update(ssl);
}
ssl->s3->key_update_count = 0;
if (ssl->s3->tmp.message_type == SSL3_MT_NEW_SESSION_TICKET &&
!ssl->server) {
return tls13_process_new_session_ticket(ssl);
}
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
return 0;
}
} // namespace bssl