boringssl/crypto/ec/ec_montgomery.c
Brian Smith 92d60c2059 Use Fermat's Little Theorem when converting points to affine.
Fermat's Little Theorem is already used for the custom curve implementations.
Use it, for the same reasons, for the ec_montgomery-based implementations.

I tested the performance (only) on x86-64 Windows.

Change-Id: Ibf770fd3f2d3e2cfe69f06bc12c81171624ff557
Reviewed-on: https://boringssl-review.googlesource.com/8924
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-07-28 18:29:32 +00:00

313 lines
9.3 KiB
C

/* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <openssl/ec.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "internal.h"
int ec_GFp_mont_group_init(EC_GROUP *group) {
int ok;
ok = ec_GFp_simple_group_init(group);
group->mont = NULL;
return ok;
}
void ec_GFp_mont_group_finish(EC_GROUP *group) {
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
ec_GFp_simple_group_finish(group);
}
int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
BN_MONT_CTX_free(dest->mont);
dest->mont = NULL;
if (!ec_GFp_simple_group_copy(dest, src)) {
return 0;
}
if (src->mont != NULL) {
dest->mont = BN_MONT_CTX_new();
if (dest->mont == NULL) {
return 0;
}
if (!BN_MONT_CTX_copy(dest->mont, src->mont)) {
goto err;
}
}
return 1;
err:
BN_MONT_CTX_free(dest->mont);
dest->mont = NULL;
return 0;
}
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
BN_MONT_CTX *mont = NULL;
int ret = 0;
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
mont = BN_MONT_CTX_new();
if (mont == NULL) {
goto err;
}
if (!BN_MONT_CTX_set(mont, p, ctx)) {
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
goto err;
}
group->mont = mont;
mont = NULL;
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
if (!ret) {
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
}
err:
BN_CTX_free(new_ctx);
BN_MONT_CTX_free(mont);
return ret;
}
int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx) {
if (group->mont == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
return 0;
}
return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
}
int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx) {
if (group->mont == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
return 0;
}
return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
}
int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx) {
if (group->mont == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
return 0;
}
return BN_to_montgomery(r, a, group->mont, ctx);
}
int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx) {
if (group->mont == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
return 0;
}
return BN_from_montgomery(r, a, group->mont, ctx);
}
static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point,
BIGNUM *x, BIGNUM *y,
BN_CTX *ctx) {
if (EC_POINT_is_at_infinity(group, point)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
int ret = 0;
BN_CTX_start(ctx);
if (BN_cmp(&point->Z, &group->one) == 0) {
/* |point| is already affine. */
if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
goto err;
}
if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
goto err;
}
} else {
/* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
BIGNUM *Z_1 = BN_CTX_get(ctx);
BIGNUM *Z_2 = BN_CTX_get(ctx);
BIGNUM *Z_3 = BN_CTX_get(ctx);
BIGNUM *field_minus_2 = BN_CTX_get(ctx);
if (Z_1 == NULL ||
Z_2 == NULL ||
Z_3 == NULL ||
field_minus_2 == NULL) {
goto err;
}
/* The straightforward way to calculate the inverse of a Montgomery-encoded
* value where the result is Montgomery-encoded is:
*
* |BN_from_montgomery| + |BN_mod_inverse| + |BN_to_montgomery|.
*
* This is equivalent, but more efficient, because |BN_from_montgomery|
* is more efficient (at least in theory) than |BN_to_montgomery|, since it
* doesn't have to do the multiplication before the reduction.
*
* Use Fermat's Little Theorem with |BN_mod_exp_mont_consttime| instead of
* |BN_mod_inverse| since this inversion may be done as the final step of
* private key operations. Unfortunately, this is suboptimal for ECDSA
* verification. */
if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
!BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
!BN_copy(field_minus_2, &group->field) ||
!BN_sub_word(field_minus_2, 2) ||
!BN_mod_exp_mont_consttime(Z_1, Z_1, field_minus_2, &group->field,
ctx, group->mont)) {
goto err;
}
if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
goto err;
}
/* Instead of using |BN_from_montgomery| to convert the |x| coordinate
* and then calling |BN_from_montgomery| again to convert the |y|
* coordinate below, convert the common factor |Z_2| once now, saving one
* reduction. */
if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
goto err;
}
if (x != NULL) {
if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
goto err;
}
}
if (y != NULL) {
if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
!BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
goto err;
}
}
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
const EC_METHOD *EC_GFp_mont_method(void) {
static const EC_METHOD ret = {
ec_GFp_mont_group_init,
ec_GFp_mont_group_finish,
ec_GFp_mont_group_copy,
ec_GFp_mont_group_set_curve,
ec_GFp_mont_point_get_affine_coordinates,
ec_wNAF_mul /* XXX: Not constant time. */,
ec_GFp_mont_field_mul,
ec_GFp_mont_field_sqr,
ec_GFp_mont_field_encode,
ec_GFp_mont_field_decode,
};
return &ret;
}