92d60c2059
Fermat's Little Theorem is already used for the custom curve implementations. Use it, for the same reasons, for the ec_montgomery-based implementations. I tested the performance (only) on x86-64 Windows. Change-Id: Ibf770fd3f2d3e2cfe69f06bc12c81171624ff557 Reviewed-on: https://boringssl-review.googlesource.com/8924 Reviewed-by: Adam Langley <agl@google.com> Commit-Queue: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
313 lines
9.3 KiB
C
313 lines
9.3 KiB
C
/* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
|
|
* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the OpenSSL open source
|
|
* license provided above.
|
|
*
|
|
* The elliptic curve binary polynomial software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
|
* Laboratories. */
|
|
|
|
#include <openssl/ec.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
int ec_GFp_mont_group_init(EC_GROUP *group) {
|
|
int ok;
|
|
|
|
ok = ec_GFp_simple_group_init(group);
|
|
group->mont = NULL;
|
|
return ok;
|
|
}
|
|
|
|
void ec_GFp_mont_group_finish(EC_GROUP *group) {
|
|
BN_MONT_CTX_free(group->mont);
|
|
group->mont = NULL;
|
|
ec_GFp_simple_group_finish(group);
|
|
}
|
|
|
|
int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
|
|
BN_MONT_CTX_free(dest->mont);
|
|
dest->mont = NULL;
|
|
|
|
if (!ec_GFp_simple_group_copy(dest, src)) {
|
|
return 0;
|
|
}
|
|
|
|
if (src->mont != NULL) {
|
|
dest->mont = BN_MONT_CTX_new();
|
|
if (dest->mont == NULL) {
|
|
return 0;
|
|
}
|
|
if (!BN_MONT_CTX_copy(dest->mont, src->mont)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
BN_MONT_CTX_free(dest->mont);
|
|
dest->mont = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
|
|
BN_CTX *new_ctx = NULL;
|
|
BN_MONT_CTX *mont = NULL;
|
|
int ret = 0;
|
|
|
|
BN_MONT_CTX_free(group->mont);
|
|
group->mont = NULL;
|
|
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
mont = BN_MONT_CTX_new();
|
|
if (mont == NULL) {
|
|
goto err;
|
|
}
|
|
if (!BN_MONT_CTX_set(mont, p, ctx)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
|
goto err;
|
|
}
|
|
|
|
group->mont = mont;
|
|
mont = NULL;
|
|
|
|
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
|
|
|
|
if (!ret) {
|
|
BN_MONT_CTX_free(group->mont);
|
|
group->mont = NULL;
|
|
}
|
|
|
|
err:
|
|
BN_CTX_free(new_ctx);
|
|
BN_MONT_CTX_free(mont);
|
|
return ret;
|
|
}
|
|
|
|
int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *ctx) {
|
|
if (group->mont == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
|
|
}
|
|
|
|
int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *ctx) {
|
|
if (group->mont == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
|
|
}
|
|
|
|
int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *ctx) {
|
|
if (group->mont == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
return BN_to_montgomery(r, a, group->mont, ctx);
|
|
}
|
|
|
|
int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *ctx) {
|
|
if (group->mont == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
|
|
return 0;
|
|
}
|
|
|
|
return BN_from_montgomery(r, a, group->mont, ctx);
|
|
}
|
|
|
|
static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
|
|
const EC_POINT *point,
|
|
BIGNUM *x, BIGNUM *y,
|
|
BN_CTX *ctx) {
|
|
if (EC_POINT_is_at_infinity(group, point)) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
|
|
return 0;
|
|
}
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if (BN_cmp(&point->Z, &group->one) == 0) {
|
|
/* |point| is already affine. */
|
|
if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
|
|
goto err;
|
|
}
|
|
if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
/* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
|
|
|
|
BIGNUM *Z_1 = BN_CTX_get(ctx);
|
|
BIGNUM *Z_2 = BN_CTX_get(ctx);
|
|
BIGNUM *Z_3 = BN_CTX_get(ctx);
|
|
BIGNUM *field_minus_2 = BN_CTX_get(ctx);
|
|
if (Z_1 == NULL ||
|
|
Z_2 == NULL ||
|
|
Z_3 == NULL ||
|
|
field_minus_2 == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/* The straightforward way to calculate the inverse of a Montgomery-encoded
|
|
* value where the result is Montgomery-encoded is:
|
|
*
|
|
* |BN_from_montgomery| + |BN_mod_inverse| + |BN_to_montgomery|.
|
|
*
|
|
* This is equivalent, but more efficient, because |BN_from_montgomery|
|
|
* is more efficient (at least in theory) than |BN_to_montgomery|, since it
|
|
* doesn't have to do the multiplication before the reduction.
|
|
*
|
|
* Use Fermat's Little Theorem with |BN_mod_exp_mont_consttime| instead of
|
|
* |BN_mod_inverse| since this inversion may be done as the final step of
|
|
* private key operations. Unfortunately, this is suboptimal for ECDSA
|
|
* verification. */
|
|
if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
|
|
!BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
|
|
!BN_copy(field_minus_2, &group->field) ||
|
|
!BN_sub_word(field_minus_2, 2) ||
|
|
!BN_mod_exp_mont_consttime(Z_1, Z_1, field_minus_2, &group->field,
|
|
ctx, group->mont)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
/* Instead of using |BN_from_montgomery| to convert the |x| coordinate
|
|
* and then calling |BN_from_montgomery| again to convert the |y|
|
|
* coordinate below, convert the common factor |Z_2| once now, saving one
|
|
* reduction. */
|
|
if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
if (x != NULL) {
|
|
if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (y != NULL) {
|
|
if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
|
|
!BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(new_ctx);
|
|
return ret;
|
|
}
|
|
|
|
const EC_METHOD *EC_GFp_mont_method(void) {
|
|
static const EC_METHOD ret = {
|
|
ec_GFp_mont_group_init,
|
|
ec_GFp_mont_group_finish,
|
|
ec_GFp_mont_group_copy,
|
|
ec_GFp_mont_group_set_curve,
|
|
ec_GFp_mont_point_get_affine_coordinates,
|
|
ec_wNAF_mul /* XXX: Not constant time. */,
|
|
ec_GFp_mont_field_mul,
|
|
ec_GFp_mont_field_sqr,
|
|
ec_GFp_mont_field_encode,
|
|
ec_GFp_mont_field_decode,
|
|
};
|
|
|
|
return &ret;
|
|
}
|