boringssl/ssl/ssl_aead_ctx.cc
David Benjamin e39ac8fb59 Switch BORINGSSL_INTERNAL_CXX_TYPES in favor of subclassing games.
The previous attempt around the 'struct ssl_st' compatibility mess
offended OSS-Fuzz and UBSan because one compilation unit passed a
function pointer with ssl_st* and another called it with
bssl::SSLConnection*.

Linkers don't retain such types, of course, but to silence this alert,
instead make C-visible types be separate from the implementation and
subclass the public type. This does mean we risk polluting the symbol
namespace, but hopefully the compiler is smart enough to inline the
visible struct's constructor and destructor.

Bug: 132
Change-Id: Ia75a89b3a22a202883ad671a630b72d0aeef680e
Reviewed-on: https://boringssl-review.googlesource.com/18224
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
2017-07-20 17:24:12 +00:00

366 lines
12 KiB
C++

/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "../crypto/internal.h"
#include "internal.h"
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
#define FUZZER_MODE true
#else
#define FUZZER_MODE false
#endif
namespace bssl {
SSLAEADContext::SSLAEADContext(uint16_t version_arg,
const SSL_CIPHER *cipher_arg)
: cipher_(cipher_arg),
version_(version_arg),
variable_nonce_included_in_record_(false),
random_variable_nonce_(false),
omit_length_in_ad_(false),
omit_version_in_ad_(false),
omit_ad_(false),
xor_fixed_nonce_(false) {
OPENSSL_memset(fixed_nonce_, 0, sizeof(fixed_nonce_));
}
SSLAEADContext::~SSLAEADContext() {}
UniquePtr<SSLAEADContext> SSLAEADContext::CreateNullCipher() {
return MakeUnique<SSLAEADContext>(0 /* version */, nullptr /* cipher */);
}
UniquePtr<SSLAEADContext> SSLAEADContext::Create(
enum evp_aead_direction_t direction, uint16_t version, int is_dtls,
const SSL_CIPHER *cipher, const uint8_t *enc_key, size_t enc_key_len,
const uint8_t *mac_key, size_t mac_key_len, const uint8_t *fixed_iv,
size_t fixed_iv_len) {
const EVP_AEAD *aead;
size_t expected_mac_key_len, expected_fixed_iv_len;
if (!ssl_cipher_get_evp_aead(&aead, &expected_mac_key_len,
&expected_fixed_iv_len, cipher, version,
is_dtls) ||
/* Ensure the caller returned correct key sizes. */
expected_fixed_iv_len != fixed_iv_len ||
expected_mac_key_len != mac_key_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return nullptr;
}
uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH];
if (mac_key_len > 0) {
/* This is a "stateful" AEAD (for compatibility with pre-AEAD cipher
* suites). */
if (mac_key_len + enc_key_len + fixed_iv_len > sizeof(merged_key)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return nullptr;
}
OPENSSL_memcpy(merged_key, mac_key, mac_key_len);
OPENSSL_memcpy(merged_key + mac_key_len, enc_key, enc_key_len);
OPENSSL_memcpy(merged_key + mac_key_len + enc_key_len, fixed_iv,
fixed_iv_len);
enc_key = merged_key;
enc_key_len += mac_key_len;
enc_key_len += fixed_iv_len;
}
UniquePtr<SSLAEADContext> aead_ctx =
MakeUnique<SSLAEADContext>(version, cipher);
if (!aead_ctx) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return nullptr;
}
if (!EVP_AEAD_CTX_init_with_direction(
aead_ctx->ctx_.get(), aead, enc_key, enc_key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH, direction)) {
return nullptr;
}
assert(EVP_AEAD_nonce_length(aead) <= EVP_AEAD_MAX_NONCE_LENGTH);
static_assert(EVP_AEAD_MAX_NONCE_LENGTH < 256,
"variable_nonce_len doesn't fit in uint8_t");
aead_ctx->variable_nonce_len_ = (uint8_t)EVP_AEAD_nonce_length(aead);
if (mac_key_len == 0) {
assert(fixed_iv_len <= sizeof(aead_ctx->fixed_nonce_));
OPENSSL_memcpy(aead_ctx->fixed_nonce_, fixed_iv, fixed_iv_len);
aead_ctx->fixed_nonce_len_ = fixed_iv_len;
if (cipher->algorithm_enc & SSL_CHACHA20POLY1305) {
/* The fixed nonce into the actual nonce (the sequence number). */
aead_ctx->xor_fixed_nonce_ = true;
aead_ctx->variable_nonce_len_ = 8;
} else {
/* The fixed IV is prepended to the nonce. */
assert(fixed_iv_len <= aead_ctx->variable_nonce_len_);
aead_ctx->variable_nonce_len_ -= fixed_iv_len;
}
/* AES-GCM uses an explicit nonce. */
if (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) {
aead_ctx->variable_nonce_included_in_record_ = true;
}
/* The TLS 1.3 construction XORs the fixed nonce into the sequence number
* and omits the additional data. */
if (version >= TLS1_3_VERSION) {
aead_ctx->xor_fixed_nonce_ = true;
aead_ctx->variable_nonce_len_ = 8;
aead_ctx->variable_nonce_included_in_record_ = false;
aead_ctx->omit_ad_ = true;
assert(fixed_iv_len >= aead_ctx->variable_nonce_len_);
}
} else {
assert(version < TLS1_3_VERSION);
aead_ctx->variable_nonce_included_in_record_ = true;
aead_ctx->random_variable_nonce_ = true;
aead_ctx->omit_length_in_ad_ = true;
aead_ctx->omit_version_in_ad_ = (version == SSL3_VERSION);
}
return aead_ctx;
}
size_t SSLAEADContext::ExplicitNonceLen() const {
if (!FUZZER_MODE && variable_nonce_included_in_record_) {
return variable_nonce_len_;
}
return 0;
}
size_t SSLAEADContext::MaxSuffixLen(size_t extra_in_len) const {
return extra_in_len +
(is_null_cipher() || FUZZER_MODE
? 0
: EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(ctx_.get())));
}
size_t SSLAEADContext::MaxOverhead() const {
return ExplicitNonceLen() + MaxSuffixLen(0);
}
size_t SSLAEADContext::GetAdditionalData(uint8_t out[13], uint8_t type,
uint16_t wire_version,
const uint8_t seqnum[8],
size_t plaintext_len) {
if (omit_ad_) {
return 0;
}
OPENSSL_memcpy(out, seqnum, 8);
size_t len = 8;
out[len++] = type;
if (!omit_version_in_ad_) {
out[len++] = static_cast<uint8_t>((wire_version >> 8));
out[len++] = static_cast<uint8_t>(wire_version);
}
if (!omit_length_in_ad_) {
out[len++] = static_cast<uint8_t>((plaintext_len >> 8));
out[len++] = static_cast<uint8_t>(plaintext_len);
}
return len;
}
bool SSLAEADContext::Open(CBS *out, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], uint8_t *in, size_t in_len) {
if (is_null_cipher() || FUZZER_MODE) {
/* Handle the initial NULL cipher. */
CBS_init(out, in, in_len);
return true;
}
/* TLS 1.2 AEADs include the length in the AD and are assumed to have fixed
* overhead. Otherwise the parameter is unused. */
size_t plaintext_len = 0;
if (!omit_length_in_ad_) {
size_t overhead = MaxOverhead();
if (in_len < overhead) {
/* Publicly invalid. */
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
return false;
}
plaintext_len = in_len - overhead;
}
uint8_t ad[13];
size_t ad_len =
GetAdditionalData(ad, type, wire_version, seqnum, plaintext_len);
/* Assemble the nonce. */
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
size_t nonce_len = 0;
/* Prepend the fixed nonce, or left-pad with zeros if XORing. */
if (xor_fixed_nonce_) {
nonce_len = fixed_nonce_len_ - variable_nonce_len_;
OPENSSL_memset(nonce, 0, nonce_len);
} else {
OPENSSL_memcpy(nonce, fixed_nonce_, fixed_nonce_len_);
nonce_len += fixed_nonce_len_;
}
/* Add the variable nonce. */
if (variable_nonce_included_in_record_) {
if (in_len < variable_nonce_len_) {
/* Publicly invalid. */
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
return false;
}
OPENSSL_memcpy(nonce + nonce_len, in, variable_nonce_len_);
in += variable_nonce_len_;
in_len -= variable_nonce_len_;
} else {
assert(variable_nonce_len_ == 8);
OPENSSL_memcpy(nonce + nonce_len, seqnum, variable_nonce_len_);
}
nonce_len += variable_nonce_len_;
/* XOR the fixed nonce, if necessary. */
if (xor_fixed_nonce_) {
assert(nonce_len == fixed_nonce_len_);
for (size_t i = 0; i < fixed_nonce_len_; i++) {
nonce[i] ^= fixed_nonce_[i];
}
}
/* Decrypt in-place. */
size_t len;
if (!EVP_AEAD_CTX_open(ctx_.get(), in, &len, in_len, nonce, nonce_len, in,
in_len, ad, ad_len)) {
return false;
}
CBS_init(out, in, len);
return true;
}
bool SSLAEADContext::SealScatter(uint8_t *out_prefix, uint8_t *out,
uint8_t *out_suffix, size_t *out_suffix_len,
size_t max_out_suffix_len, uint8_t type,
uint16_t wire_version, const uint8_t seqnum[8],
const uint8_t *in, size_t in_len,
const uint8_t *extra_in, size_t extra_in_len) {
if ((in != out && buffers_alias(in, in_len, out, in_len)) ||
buffers_alias(in, in_len, out_suffix, max_out_suffix_len)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return false;
}
if (extra_in_len > max_out_suffix_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return false;
}
if (is_null_cipher() || FUZZER_MODE) {
/* Handle the initial NULL cipher. */
OPENSSL_memmove(out, in, in_len);
OPENSSL_memmove(out_suffix, extra_in, extra_in_len);
*out_suffix_len = extra_in_len;
return true;
}
uint8_t ad[13];
size_t ad_len = GetAdditionalData(ad, type, wire_version, seqnum, in_len);
/* Assemble the nonce. */
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
size_t nonce_len = 0;
/* Prepend the fixed nonce, or left-pad with zeros if XORing. */
if (xor_fixed_nonce_) {
nonce_len = fixed_nonce_len_ - variable_nonce_len_;
OPENSSL_memset(nonce, 0, nonce_len);
} else {
OPENSSL_memcpy(nonce, fixed_nonce_, fixed_nonce_len_);
nonce_len += fixed_nonce_len_;
}
/* Select the variable nonce. */
if (random_variable_nonce_) {
assert(variable_nonce_included_in_record_);
if (!RAND_bytes(nonce + nonce_len, variable_nonce_len_)) {
return false;
}
} else {
/* When sending we use the sequence number as the variable part of the
* nonce. */
assert(variable_nonce_len_ == 8);
OPENSSL_memcpy(nonce + nonce_len, seqnum, variable_nonce_len_);
}
nonce_len += variable_nonce_len_;
/* Emit the variable nonce if included in the record. */
if (variable_nonce_included_in_record_) {
assert(!xor_fixed_nonce_);
if (buffers_alias(in, in_len, out_prefix, variable_nonce_len_)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return false;
}
OPENSSL_memcpy(out_prefix, nonce + fixed_nonce_len_,
variable_nonce_len_);
}
/* XOR the fixed nonce, if necessary. */
if (xor_fixed_nonce_) {
assert(nonce_len == fixed_nonce_len_);
for (size_t i = 0; i < fixed_nonce_len_; i++) {
nonce[i] ^= fixed_nonce_[i];
}
}
return !!EVP_AEAD_CTX_seal_scatter(
ctx_.get(), out, out_suffix, out_suffix_len, max_out_suffix_len, nonce,
nonce_len, in, in_len, extra_in, extra_in_len, ad, ad_len);
}
bool SSLAEADContext::Seal(uint8_t *out, size_t *out_len, size_t max_out_len,
uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len) {
size_t prefix_len = ExplicitNonceLen();
if (in_len + prefix_len < in_len) {
OPENSSL_PUT_ERROR(CIPHER, SSL_R_RECORD_TOO_LARGE);
return false;
}
if (in_len + prefix_len > max_out_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return false;
}
size_t suffix_len;
if (!SealScatter(out, out + prefix_len, out + prefix_len + in_len,
&suffix_len, max_out_len - prefix_len - in_len, type,
wire_version, seqnum, in, in_len, 0, 0)) {
return false;
}
assert(suffix_len <= MaxSuffixLen(0));
*out_len = prefix_len + in_len + suffix_len;
return true;
}
bool SSLAEADContext::GetIV(const uint8_t **out_iv, size_t *out_iv_len) const {
return !is_null_cipher() &&
EVP_AEAD_CTX_get_iv(ctx_.get(), out_iv, out_iv_len);
}
} // namespace bssl