a838f9dc7e
None of the asymmetric crypto we inherented from OpenSSL is
constant-time because of BIGNUM. BIGNUM chops leading zeros off the
front of everything, so we end up leaking information about the first
word, in theory. BIGNUM functions additionally tend to take the full
range of inputs and then call into BN_nnmod at various points.
All our secret values should be acted on in constant-time, but k in
ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an
attempt to mitigate the BIGNUM leaks, would add a couple copies of the
order.
This does not work at all. k is used to compute two values: k^-1 and kG.
The first operation when computing k^-1 is to call BN_nnmod if k is out
of range. The entry point to our tuned constant-time curve
implementations is to call BN_nnmod if the scalar has too many bits,
which this causes. The result is both corrections are immediately undone
but cause us to do more variable-time work in the meantime.
Replace all these computations around k with the word-based functions
added in the various preceding CLs. In doing so, replace the BN_mod_mul
calls (which internally call BN_nnmod) with Montgomery reduction. We can
avoid taking k^-1 out of Montgomery form, which combines nicely with
Brian Smith's trick in 3426d10119
. Along
the way, we avoid some unnecessary mallocs.
BIGNUM still affects the private key itself, as well as the EC_POINTs.
But this should hopefully be much better now. Also it's 10% faster:
Before:
Did 15000 ECDSA P-224 signing operations in 1069117us (14030.3 ops/sec)
Did 18000 ECDSA P-256 signing operations in 1053908us (17079.3 ops/sec)
Did 1078 ECDSA P-384 signing operations in 1087853us (990.9 ops/sec)
Did 473 ECDSA P-521 signing operations in 1069835us (442.1 ops/sec)
After:
Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec)
Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec)
Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec)
Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec)
Change-Id: I2a25e90fc99dac13c0616d0ea45e125a4bd8cca1
Reviewed-on: https://boringssl-review.googlesource.com/23075
Reviewed-by: Adam Langley <agl@google.com>
475 lines
13 KiB
C
475 lines
13 KiB
C
/* Originally written by Bodo Moeller for the OpenSSL project.
|
|
* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the OpenSSL open source
|
|
* license provided above.
|
|
*
|
|
* The elliptic curve binary polynomial software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
|
* Laboratories. */
|
|
|
|
#include <openssl/ec.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "internal.h"
|
|
#include "../../internal.h"
|
|
|
|
|
|
// This file implements the wNAF-based interleaving multi-exponentiation method
|
|
// at:
|
|
// http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
|
|
// http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
|
|
|
|
// Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
|
|
// This is an array r[] of values that are either zero or odd with an
|
|
// absolute value less than 2^w satisfying
|
|
// scalar = \sum_j r[j]*2^j
|
|
// where at most one of any w+1 consecutive digits is non-zero
|
|
// with the exception that the most significant digit may be only
|
|
// w-1 zeros away from that next non-zero digit.
|
|
static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
|
|
int window_val;
|
|
int ok = 0;
|
|
int8_t *r = NULL;
|
|
int sign = 1;
|
|
int bit, next_bit, mask;
|
|
size_t len = 0, j;
|
|
|
|
if (BN_is_zero(scalar)) {
|
|
r = OPENSSL_malloc(1);
|
|
if (!r) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
r[0] = 0;
|
|
*ret_len = 1;
|
|
return r;
|
|
}
|
|
|
|
// 'int8_t' can represent integers with absolute values less than 2^7.
|
|
if (w <= 0 || w > 7) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
bit = 1 << w; // at most 128
|
|
next_bit = bit << 1; // at most 256
|
|
mask = next_bit - 1; // at most 255
|
|
|
|
if (BN_is_negative(scalar)) {
|
|
sign = -1;
|
|
}
|
|
|
|
len = BN_num_bits(scalar);
|
|
// The modified wNAF may be one digit longer than binary representation
|
|
// (*ret_len will be set to the actual length, i.e. at most
|
|
// BN_num_bits(scalar) + 1).
|
|
r = OPENSSL_malloc(len + 1);
|
|
if (r == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
window_val = scalar->d[0] & mask;
|
|
j = 0;
|
|
// If j+w+1 >= len, window_val will not increase.
|
|
while (window_val != 0 || j + w + 1 < len) {
|
|
int digit = 0;
|
|
|
|
// 0 <= window_val <= 2^(w+1)
|
|
|
|
if (window_val & 1) {
|
|
// 0 < window_val < 2^(w+1)
|
|
|
|
if (window_val & bit) {
|
|
digit = window_val - next_bit; // -2^w < digit < 0
|
|
|
|
#if 1 // modified wNAF
|
|
if (j + w + 1 >= len) {
|
|
// special case for generating modified wNAFs:
|
|
// no new bits will be added into window_val,
|
|
// so using a positive digit here will decrease
|
|
// the total length of the representation
|
|
|
|
digit = window_val & (mask >> 1); // 0 < digit < 2^w
|
|
}
|
|
#endif
|
|
} else {
|
|
digit = window_val; // 0 < digit < 2^w
|
|
}
|
|
|
|
if (digit <= -bit || digit >= bit || !(digit & 1)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
window_val -= digit;
|
|
|
|
// Now window_val is 0 or 2^(w+1) in standard wNAF generation;
|
|
// for modified window NAFs, it may also be 2^w.
|
|
if (window_val != 0 && window_val != next_bit && window_val != bit) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
r[j++] = sign * digit;
|
|
|
|
window_val >>= 1;
|
|
window_val += bit * BN_is_bit_set(scalar, j + w);
|
|
|
|
if (window_val > next_bit) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (j > len + 1) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
len = j;
|
|
ok = 1;
|
|
|
|
err:
|
|
if (!ok) {
|
|
OPENSSL_free(r);
|
|
r = NULL;
|
|
}
|
|
if (ok) {
|
|
*ret_len = len;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
// TODO: table should be optimised for the wNAF-based implementation,
|
|
// sometimes smaller windows will give better performance
|
|
// (thus the boundaries should be increased)
|
|
static size_t window_bits_for_scalar_size(size_t b) {
|
|
if (b >= 2000) {
|
|
return 6;
|
|
}
|
|
|
|
if (b >= 800) {
|
|
return 5;
|
|
}
|
|
|
|
if (b >= 300) {
|
|
return 4;
|
|
}
|
|
|
|
if (b >= 70) {
|
|
return 3;
|
|
}
|
|
|
|
if (b >= 20) {
|
|
return 2;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r,
|
|
const EC_SCALAR *g_scalar_raw, const EC_POINT *p,
|
|
const EC_SCALAR *p_scalar_raw, BN_CTX *ctx) {
|
|
BN_CTX *new_ctx = NULL;
|
|
const EC_POINT *generator = NULL;
|
|
EC_POINT *tmp = NULL;
|
|
size_t total_num = 0;
|
|
size_t i, j;
|
|
int k;
|
|
int r_is_inverted = 0;
|
|
int r_is_at_infinity = 1;
|
|
size_t *wsize = NULL; // individual window sizes
|
|
int8_t **wNAF = NULL; // individual wNAFs
|
|
size_t *wNAF_len = NULL;
|
|
size_t max_len = 0;
|
|
size_t num_val = 0;
|
|
EC_POINT **val = NULL; // precomputation
|
|
EC_POINT **v;
|
|
EC_POINT ***val_sub = NULL; // pointers to sub-arrays of 'val'
|
|
int ret = 0;
|
|
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
BN_CTX_start(ctx);
|
|
|
|
// Convert from |EC_SCALAR| to |BIGNUM|. |BIGNUM| is not constant-time, but
|
|
// neither is the rest of this function.
|
|
BIGNUM *g_scalar = NULL, *p_scalar = NULL;
|
|
if (g_scalar_raw != NULL) {
|
|
g_scalar = BN_CTX_get(ctx);
|
|
if (g_scalar == NULL ||
|
|
!bn_set_words(g_scalar, g_scalar_raw->words, group->order.top)) {
|
|
goto err;
|
|
}
|
|
}
|
|
if (p_scalar_raw != NULL) {
|
|
p_scalar = BN_CTX_get(ctx);
|
|
if (p_scalar == NULL ||
|
|
!bn_set_words(p_scalar, p_scalar_raw->words, group->order.top)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
// TODO: This function used to take |points| and |scalars| as arrays of
|
|
// |num| elements. The code below should be simplified to work in terms of |p|
|
|
// and |p_scalar|.
|
|
size_t num = p != NULL ? 1 : 0;
|
|
const EC_POINT **points = p != NULL ? &p : NULL;
|
|
BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
|
|
|
|
total_num = num;
|
|
|
|
if (g_scalar != NULL) {
|
|
generator = EC_GROUP_get0_generator(group);
|
|
if (generator == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
|
|
goto err;
|
|
}
|
|
|
|
++total_num; // treat 'g_scalar' like 'num'-th element of 'scalars'
|
|
}
|
|
|
|
|
|
wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
|
|
wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
|
|
wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
|
|
val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
|
|
|
|
// Ensure wNAF is initialised in case we end up going to err.
|
|
if (wNAF != NULL) {
|
|
OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
|
|
}
|
|
|
|
if (!wsize || !wNAF_len || !wNAF || !val_sub) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
// num_val will be the total number of temporarily precomputed points
|
|
num_val = 0;
|
|
|
|
for (i = 0; i < total_num; i++) {
|
|
size_t bits;
|
|
|
|
bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
|
|
wsize[i] = window_bits_for_scalar_size(bits);
|
|
num_val += (size_t)1 << (wsize[i] - 1);
|
|
wNAF[i] =
|
|
compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
|
|
if (wNAF[i] == NULL) {
|
|
goto err;
|
|
}
|
|
if (wNAF_len[i] > max_len) {
|
|
max_len = wNAF_len[i];
|
|
}
|
|
}
|
|
|
|
// All points we precompute now go into a single array 'val'. 'val_sub[i]' is
|
|
// a pointer to the subarray for the i-th point.
|
|
val = OPENSSL_malloc(num_val * sizeof(val[0]));
|
|
if (val == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
|
|
|
|
// allocate points for precomputation
|
|
v = val;
|
|
for (i = 0; i < total_num; i++) {
|
|
val_sub[i] = v;
|
|
for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
|
|
*v = EC_POINT_new(group);
|
|
if (*v == NULL) {
|
|
goto err;
|
|
}
|
|
v++;
|
|
}
|
|
}
|
|
if (!(v == val + num_val)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (!(tmp = EC_POINT_new(group))) {
|
|
goto err;
|
|
}
|
|
|
|
// prepare precomputed values:
|
|
// val_sub[i][0] := points[i]
|
|
// val_sub[i][1] := 3 * points[i]
|
|
// val_sub[i][2] := 5 * points[i]
|
|
// ...
|
|
for (i = 0; i < total_num; i++) {
|
|
if (i < num) {
|
|
if (!EC_POINT_copy(val_sub[i][0], points[i])) {
|
|
goto err;
|
|
}
|
|
} else if (!EC_POINT_copy(val_sub[i][0], generator)) {
|
|
goto err;
|
|
}
|
|
|
|
if (wsize[i] > 1) {
|
|
if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
|
|
goto err;
|
|
}
|
|
for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
|
|
if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 1 // optional; window_bits_for_scalar_size assumes we do this step
|
|
if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
r_is_at_infinity = 1;
|
|
|
|
for (k = max_len - 1; k >= 0; k--) {
|
|
if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < total_num; i++) {
|
|
if (wNAF_len[i] > (size_t)k) {
|
|
int digit = wNAF[i][k];
|
|
int is_neg;
|
|
|
|
if (digit) {
|
|
is_neg = digit < 0;
|
|
|
|
if (is_neg) {
|
|
digit = -digit;
|
|
}
|
|
|
|
if (is_neg != r_is_inverted) {
|
|
if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
|
|
goto err;
|
|
}
|
|
r_is_inverted = !r_is_inverted;
|
|
}
|
|
|
|
// digit > 0
|
|
|
|
if (r_is_at_infinity) {
|
|
if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
|
|
goto err;
|
|
}
|
|
r_is_at_infinity = 0;
|
|
} else {
|
|
if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (r_is_at_infinity) {
|
|
if (!EC_POINT_set_to_infinity(group, r)) {
|
|
goto err;
|
|
}
|
|
} else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
if (ctx != NULL) {
|
|
BN_CTX_end(ctx);
|
|
}
|
|
BN_CTX_free(new_ctx);
|
|
EC_POINT_free(tmp);
|
|
OPENSSL_free(wsize);
|
|
OPENSSL_free(wNAF_len);
|
|
if (wNAF != NULL) {
|
|
for (i = 0; i < total_num; i++) {
|
|
OPENSSL_free(wNAF[i]);
|
|
}
|
|
|
|
OPENSSL_free(wNAF);
|
|
}
|
|
if (val != NULL) {
|
|
for (i = 0; i < num_val; i++) {
|
|
EC_POINT_free(val[i]);
|
|
}
|
|
|
|
OPENSSL_free(val);
|
|
}
|
|
OPENSSL_free(val_sub);
|
|
return ret;
|
|
}
|