8eadca50a2
(This is actually slightly silly as |a|'s probability distribution falls off exponentially, but it's easy enough to do right.) Instead, we run the loop to the end. This is still performant because we can, as before, return early on composite numbers. Only two calls actually run to the end. Moreover, running to the end has comparable cost to BN_mod_exp_mont_consttime. Median time goes from 0.140s to 0.231s. That cost some, but we're still faster than the original implementation. We're down to one more leak, which is that the BN_rand_range_ex call does not hide |w1|. That one may only be solved probabilistically... Median of 29 RSA keygens: 0m0.123s -> 0m0.145s (Accuracy beyond 0.1s is questionable.) Bug: 238 Change-Id: I4847cb0053118c572d2dd5f855388b5199fa6ce2 Reviewed-on: https://boringssl-review.googlesource.com/25888 Reviewed-by: Adam Langley <agl@google.com>
381 lines
10 KiB
C
381 lines
10 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/type_check.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n) {
|
|
int i, nw, lb, rb;
|
|
BN_ULONG *t, *f;
|
|
BN_ULONG l;
|
|
|
|
if (n < 0) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
|
|
return 0;
|
|
}
|
|
|
|
r->neg = a->neg;
|
|
nw = n / BN_BITS2;
|
|
if (!bn_wexpand(r, a->width + nw + 1)) {
|
|
return 0;
|
|
}
|
|
lb = n % BN_BITS2;
|
|
rb = BN_BITS2 - lb;
|
|
f = a->d;
|
|
t = r->d;
|
|
t[a->width + nw] = 0;
|
|
if (lb == 0) {
|
|
for (i = a->width - 1; i >= 0; i--) {
|
|
t[nw + i] = f[i];
|
|
}
|
|
} else {
|
|
for (i = a->width - 1; i >= 0; i--) {
|
|
l = f[i];
|
|
t[nw + i + 1] |= l >> rb;
|
|
t[nw + i] = l << lb;
|
|
}
|
|
}
|
|
OPENSSL_memset(t, 0, nw * sizeof(t[0]));
|
|
r->width = a->width + nw + 1;
|
|
bn_set_minimal_width(r);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int BN_lshift1(BIGNUM *r, const BIGNUM *a) {
|
|
BN_ULONG *ap, *rp, t, c;
|
|
int i;
|
|
|
|
if (r != a) {
|
|
r->neg = a->neg;
|
|
if (!bn_wexpand(r, a->width + 1)) {
|
|
return 0;
|
|
}
|
|
r->width = a->width;
|
|
} else {
|
|
if (!bn_wexpand(r, a->width + 1)) {
|
|
return 0;
|
|
}
|
|
}
|
|
ap = a->d;
|
|
rp = r->d;
|
|
c = 0;
|
|
for (i = 0; i < a->width; i++) {
|
|
t = *(ap++);
|
|
*(rp++) = (t << 1) | c;
|
|
c = t >> (BN_BITS2 - 1);
|
|
}
|
|
if (c) {
|
|
*rp = 1;
|
|
r->width++;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift,
|
|
size_t num) {
|
|
unsigned shift_bits = shift % BN_BITS2;
|
|
size_t shift_words = shift / BN_BITS2;
|
|
if (shift_words >= num) {
|
|
OPENSSL_memset(r, 0, num * sizeof(BN_ULONG));
|
|
return;
|
|
}
|
|
if (shift_bits == 0) {
|
|
OPENSSL_memmove(r, a + shift_words, (num - shift_words) * sizeof(BN_ULONG));
|
|
} else {
|
|
for (size_t i = shift_words; i < num - 1; i++) {
|
|
r[i - shift_words] =
|
|
(a[i] >> shift_bits) | (a[i + 1] << (BN_BITS2 - shift_bits));
|
|
}
|
|
r[num - 1 - shift_words] = a[num - 1] >> shift_bits;
|
|
}
|
|
OPENSSL_memset(r + num - shift_words, 0, shift_words * sizeof(BN_ULONG));
|
|
}
|
|
|
|
int BN_rshift(BIGNUM *r, const BIGNUM *a, int n) {
|
|
if (n < 0) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
|
|
return 0;
|
|
}
|
|
|
|
if (!bn_wexpand(r, a->width)) {
|
|
return 0;
|
|
}
|
|
bn_rshift_words(r->d, a->d, n, a->width);
|
|
r->neg = a->neg;
|
|
r->width = a->width;
|
|
bn_set_minimal_width(r);
|
|
return 1;
|
|
}
|
|
|
|
int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a, unsigned n,
|
|
BN_CTX *ctx) {
|
|
int ret = 0;
|
|
BN_CTX_start(ctx);
|
|
BIGNUM *tmp = BN_CTX_get(ctx);
|
|
if (tmp == NULL ||
|
|
!BN_copy(r, a) ||
|
|
!bn_wexpand(tmp, r->width)) {
|
|
goto err;
|
|
}
|
|
|
|
// Shift conditionally by powers of two.
|
|
unsigned max_bits = BN_BITS2 * r->width;
|
|
for (unsigned i = 0; (max_bits >> i) != 0; i++) {
|
|
BN_ULONG mask = (n >> i) & 1;
|
|
mask = 0 - mask;
|
|
bn_rshift_words(tmp->d, r->d, 1u << i, r->width);
|
|
bn_select_words(r->d, mask, tmp->d /* apply shift */,
|
|
r->d /* ignore shift */, r->width);
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
int BN_rshift1(BIGNUM *r, const BIGNUM *a) {
|
|
BN_ULONG *ap, *rp, t, c;
|
|
int i, j;
|
|
|
|
if (BN_is_zero(a)) {
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
i = bn_minimal_width(a);
|
|
ap = a->d;
|
|
j = i - (ap[i - 1] == 1);
|
|
if (a != r) {
|
|
if (!bn_wexpand(r, j)) {
|
|
return 0;
|
|
}
|
|
r->neg = a->neg;
|
|
}
|
|
rp = r->d;
|
|
t = ap[--i];
|
|
c = t << (BN_BITS2 - 1);
|
|
if (t >>= 1) {
|
|
rp[i] = t;
|
|
}
|
|
while (i > 0) {
|
|
t = ap[--i];
|
|
rp[i] = (t >> 1) | c;
|
|
c = t << (BN_BITS2 - 1);
|
|
}
|
|
r->width = j;
|
|
|
|
if (r->width == 0) {
|
|
r->neg = 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int BN_set_bit(BIGNUM *a, int n) {
|
|
if (n < 0) {
|
|
return 0;
|
|
}
|
|
|
|
int i = n / BN_BITS2;
|
|
int j = n % BN_BITS2;
|
|
if (a->width <= i) {
|
|
if (!bn_wexpand(a, i + 1)) {
|
|
return 0;
|
|
}
|
|
for (int k = a->width; k < i + 1; k++) {
|
|
a->d[k] = 0;
|
|
}
|
|
a->width = i + 1;
|
|
}
|
|
|
|
a->d[i] |= (((BN_ULONG)1) << j);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int BN_clear_bit(BIGNUM *a, int n) {
|
|
int i, j;
|
|
|
|
if (n < 0) {
|
|
return 0;
|
|
}
|
|
|
|
i = n / BN_BITS2;
|
|
j = n % BN_BITS2;
|
|
if (a->width <= i) {
|
|
return 0;
|
|
}
|
|
|
|
a->d[i] &= (~(((BN_ULONG)1) << j));
|
|
bn_set_minimal_width(a);
|
|
return 1;
|
|
}
|
|
|
|
int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit) {
|
|
unsigned i = bit / BN_BITS2;
|
|
unsigned j = bit % BN_BITS2;
|
|
if (i >= num) {
|
|
return 0;
|
|
}
|
|
return (a[i] >> j) & 1;
|
|
}
|
|
|
|
int BN_is_bit_set(const BIGNUM *a, int n) {
|
|
if (n < 0) {
|
|
return 0;
|
|
}
|
|
return bn_is_bit_set_words(a->d, a->width, n);
|
|
}
|
|
|
|
int BN_mask_bits(BIGNUM *a, int n) {
|
|
if (n < 0) {
|
|
return 0;
|
|
}
|
|
|
|
int w = n / BN_BITS2;
|
|
int b = n % BN_BITS2;
|
|
if (w >= a->width) {
|
|
return 1;
|
|
}
|
|
if (b == 0) {
|
|
a->width = w;
|
|
} else {
|
|
a->width = w + 1;
|
|
a->d[w] &= ~(BN_MASK2 << b);
|
|
}
|
|
|
|
bn_set_minimal_width(a);
|
|
return 1;
|
|
}
|
|
|
|
static int bn_count_low_zero_bits_word(BN_ULONG l) {
|
|
OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
|
|
crypto_word_t_too_small);
|
|
OPENSSL_COMPILE_ASSERT(sizeof(int) <= sizeof(crypto_word_t),
|
|
crypto_word_t_too_small_2);
|
|
OPENSSL_COMPILE_ASSERT(BN_BITS2 == sizeof(BN_ULONG) * 8,
|
|
bn_ulong_has_padding_bits);
|
|
// C has very bizarre rules for types smaller than an int.
|
|
OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) >= sizeof(int),
|
|
bn_ulong_is_promoted_to_int);
|
|
|
|
crypto_word_t mask;
|
|
int bits = 0;
|
|
|
|
#if BN_BITS2 > 32
|
|
// Check if the lower half of |x| are all zero.
|
|
mask = constant_time_is_zero_w(l << (BN_BITS2 - 32));
|
|
// If the lower half is all zeros, it is included in the bit count and we
|
|
// count the upper half. Otherwise, we count the lower half.
|
|
bits += 32 & mask;
|
|
l = constant_time_select_w(mask, l >> 32, l);
|
|
#endif
|
|
|
|
// The remaining blocks are analogous iterations at lower powers of two.
|
|
mask = constant_time_is_zero_w(l << (BN_BITS2 - 16));
|
|
bits += 16 & mask;
|
|
l = constant_time_select_w(mask, l >> 16, l);
|
|
|
|
mask = constant_time_is_zero_w(l << (BN_BITS2 - 8));
|
|
bits += 8 & mask;
|
|
l = constant_time_select_w(mask, l >> 8, l);
|
|
|
|
mask = constant_time_is_zero_w(l << (BN_BITS2 - 4));
|
|
bits += 4 & mask;
|
|
l = constant_time_select_w(mask, l >> 4, l);
|
|
|
|
mask = constant_time_is_zero_w(l << (BN_BITS2 - 2));
|
|
bits += 2 & mask;
|
|
l = constant_time_select_w(mask, l >> 2, l);
|
|
|
|
mask = constant_time_is_zero_w(l << (BN_BITS2 - 1));
|
|
bits += 1 & mask;
|
|
|
|
return bits;
|
|
}
|
|
|
|
int BN_count_low_zero_bits(const BIGNUM *bn) {
|
|
OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
|
|
crypto_word_t_too_small);
|
|
OPENSSL_COMPILE_ASSERT(sizeof(int) <= sizeof(crypto_word_t),
|
|
crypto_word_t_too_small_2);
|
|
|
|
int ret = 0;
|
|
crypto_word_t saw_nonzero = 0;
|
|
for (int i = 0; i < bn->width; i++) {
|
|
crypto_word_t nonzero = ~constant_time_is_zero_w(bn->d[i]);
|
|
crypto_word_t first_nonzero = ~saw_nonzero & nonzero;
|
|
saw_nonzero |= nonzero;
|
|
|
|
int bits = bn_count_low_zero_bits_word(bn->d[i]);
|
|
ret |= first_nonzero & (i * BN_BITS2 + bits);
|
|
}
|
|
|
|
// If got to the end of |bn| and saw no non-zero words, |bn| is zero. |ret|
|
|
// will then remain zero.
|
|
return ret;
|
|
}
|