boringssl/ssl/ssl_cipher.cc
Adam Langley e745b25dcb Remove trailing whitespace from ssl/.
Change-Id: Ibcb27e1e5b14294c9d877db89ae62ef138e9e061
Reviewed-on: https://boringssl-review.googlesource.com/26184
Reviewed-by: Adam Langley <agl@google.com>
2018-02-26 22:05:13 +00:00

1778 lines
49 KiB
C++

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/buf.h>
#include <openssl/err.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/stack.h>
#include "internal.h"
#include "../crypto/internal.h"
namespace bssl {
// kCiphers is an array of all supported ciphers, sorted by id.
static const SSL_CIPHER kCiphers[] = {
// The RSA ciphers
// Cipher 02
{
SSL3_TXT_RSA_NULL_SHA,
"TLS_RSA_WITH_NULL_SHA",
SSL3_CK_RSA_NULL_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_eNULL,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// Cipher 0A
{
SSL3_TXT_RSA_DES_192_CBC3_SHA,
"TLS_RSA_WITH_3DES_EDE_CBC_SHA",
SSL3_CK_RSA_DES_192_CBC3_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_3DES,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// New AES ciphersuites
// Cipher 2F
{
TLS1_TXT_RSA_WITH_AES_128_SHA,
"TLS_RSA_WITH_AES_128_CBC_SHA",
TLS1_CK_RSA_WITH_AES_128_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// Cipher 35
{
TLS1_TXT_RSA_WITH_AES_256_SHA,
"TLS_RSA_WITH_AES_256_CBC_SHA",
TLS1_CK_RSA_WITH_AES_256_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// TLS v1.2 ciphersuites
// Cipher 3C
{
TLS1_TXT_RSA_WITH_AES_128_SHA256,
"TLS_RSA_WITH_AES_128_CBC_SHA256",
TLS1_CK_RSA_WITH_AES_128_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES128,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher 3D
{
TLS1_TXT_RSA_WITH_AES_256_SHA256,
"TLS_RSA_WITH_AES_256_CBC_SHA256",
TLS1_CK_RSA_WITH_AES_256_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES256,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
// PSK cipher suites.
// Cipher 8C
{
TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
"TLS_PSK_WITH_AES_128_CBC_SHA",
TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
SSL_kPSK,
SSL_aPSK,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// Cipher 8D
{
TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
"TLS_PSK_WITH_AES_256_CBC_SHA",
TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
SSL_kPSK,
SSL_aPSK,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// GCM ciphersuites from RFC5288
// Cipher 9C
{
TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
"TLS_RSA_WITH_AES_128_GCM_SHA256",
TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher 9D
{
TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
"TLS_RSA_WITH_AES_256_GCM_SHA384",
TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
SSL_kRSA,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
// TLS 1.3 suites.
// Cipher 1301
{
TLS1_TXT_AES_128_GCM_SHA256,
"TLS_AES_128_GCM_SHA256",
TLS1_CK_AES_128_GCM_SHA256,
SSL_kGENERIC,
SSL_aGENERIC,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher 1302
{
TLS1_TXT_AES_256_GCM_SHA384,
"TLS_AES_256_GCM_SHA384",
TLS1_CK_AES_256_GCM_SHA384,
SSL_kGENERIC,
SSL_aGENERIC,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
// Cipher 1303
{
TLS1_TXT_CHACHA20_POLY1305_SHA256,
"TLS_CHACHA20_POLY1305_SHA256",
TLS1_CK_CHACHA20_POLY1305_SHA256,
SSL_kGENERIC,
SSL_aGENERIC,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher C009
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
"TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// Cipher C00A
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
"TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// Cipher C013
{
TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
SSL_kECDHE,
SSL_aRSA,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// Cipher C014
{
TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
SSL_kECDHE,
SSL_aRSA,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// HMAC based TLS v1.2 ciphersuites from RFC5289
// Cipher C023
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
"TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256",
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES128,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher C024
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
"TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384",
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES256,
SSL_SHA384,
SSL_HANDSHAKE_MAC_SHA384,
},
// Cipher C027
{
TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256",
TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
SSL_kECDHE,
SSL_aRSA,
SSL_AES128,
SSL_SHA256,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher C028
{
TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384",
TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
SSL_kECDHE,
SSL_aRSA,
SSL_AES256,
SSL_SHA384,
SSL_HANDSHAKE_MAC_SHA384,
},
// GCM based TLS v1.2 ciphersuites from RFC5289
// Cipher C02B
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher C02C
{
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
SSL_kECDHE,
SSL_aECDSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
// Cipher C02F
{
TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
SSL_kECDHE,
SSL_aRSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher C030
{
TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
SSL_kECDHE,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA384,
},
// ECDHE-PSK cipher suites.
// Cipher C035
{
TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
"TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
SSL_kECDHE,
SSL_aPSK,
SSL_AES128,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// Cipher C036
{
TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
"TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA",
TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
SSL_kECDHE,
SSL_aPSK,
SSL_AES256,
SSL_SHA1,
SSL_HANDSHAKE_MAC_DEFAULT,
},
// ChaCha20-Poly1305 cipher suites.
// Cipher CCA8
{
TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
"TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
SSL_kECDHE,
SSL_aRSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher CCA9
{
TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
"TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
SSL_kECDHE,
SSL_aECDSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
// Cipher CCAB
{
TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
"TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256",
TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
SSL_kECDHE,
SSL_aPSK,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_HANDSHAKE_MAC_SHA256,
},
};
static const size_t kCiphersLen = OPENSSL_ARRAY_SIZE(kCiphers);
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st {
const SSL_CIPHER *cipher;
bool active;
bool in_group;
struct cipher_order_st *next, *prev;
} CIPHER_ORDER;
typedef struct cipher_alias_st {
// name is the name of the cipher alias.
const char *name;
// The following fields are bitmasks for the corresponding fields on
// |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
// bit corresponding to the cipher's value is set to 1. If any bitmask is
// all zeroes, the alias matches nothing. Use |~0u| for the default value.
uint32_t algorithm_mkey;
uint32_t algorithm_auth;
uint32_t algorithm_enc;
uint32_t algorithm_mac;
// min_version, if non-zero, matches all ciphers which were added in that
// particular protocol version.
uint16_t min_version;
} CIPHER_ALIAS;
static const CIPHER_ALIAS kCipherAliases[] = {
// "ALL" doesn't include eNULL. It must be explicitly enabled.
{"ALL", ~0u, ~0u, ~0u, ~0u, 0},
// The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing.
// key exchange aliases
// (some of those using only a single bit here combine
// multiple key exchange algs according to the RFCs.
{"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0},
{"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0},
// server authentication aliases
{"aRSA", ~0u, SSL_aRSA, ~0u, ~0u, 0},
{"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
{"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
{"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0},
// aliases combining key exchange and server authentication
{"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
{"RSA", SSL_kRSA, SSL_aRSA, ~0u, ~0u, 0},
{"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0},
// symmetric encryption aliases
{"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0},
{"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0},
{"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0},
{"AES", ~0u, ~0u, SSL_AES, ~0u, 0},
{"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0},
{"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0},
// MAC aliases
{"SHA1", ~0u, ~0u, ~0u, SSL_SHA1, 0},
{"SHA", ~0u, ~0u, ~0u, SSL_SHA1, 0},
{"SHA256", ~0u, ~0u, ~0u, SSL_SHA256, 0},
{"SHA384", ~0u, ~0u, ~0u, SSL_SHA384, 0},
// Legacy protocol minimum version aliases. "TLSv1" is intentionally the
// same as "SSLv3".
{"SSLv3", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
{"TLSv1", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
{"TLSv1.2", ~0u, ~0u, ~0u, ~0u, TLS1_2_VERSION},
// Legacy strength classes.
{"HIGH", ~0u, ~0u, ~0u, ~0u, 0},
{"FIPS", ~0u, ~0u, ~0u, ~0u, 0},
};
static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases);
static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) {
const SSL_CIPHER *a = reinterpret_cast<const SSL_CIPHER *>(in_a);
const SSL_CIPHER *b = reinterpret_cast<const SSL_CIPHER *>(in_b);
if (a->id > b->id) {
return 1;
} else if (a->id < b->id) {
return -1;
} else {
return 0;
}
}
bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
size_t *out_mac_secret_len,
size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
uint16_t version, int is_dtls) {
*out_aead = NULL;
*out_mac_secret_len = 0;
*out_fixed_iv_len = 0;
const int is_tls12 = version == TLS1_2_VERSION && !is_dtls;
if (cipher->algorithm_mac == SSL_AEAD) {
if (cipher->algorithm_enc == SSL_AES128GCM) {
*out_aead =
is_tls12 ? EVP_aead_aes_128_gcm_tls12() : EVP_aead_aes_128_gcm();
*out_fixed_iv_len = 4;
} else if (cipher->algorithm_enc == SSL_AES256GCM) {
*out_aead =
is_tls12 ? EVP_aead_aes_256_gcm_tls12() : EVP_aead_aes_256_gcm();
*out_fixed_iv_len = 4;
} else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) {
*out_aead = EVP_aead_chacha20_poly1305();
*out_fixed_iv_len = 12;
} else {
return false;
}
// In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code
// above computes the TLS 1.2 construction.
if (version >= TLS1_3_VERSION) {
*out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead);
}
} else if (cipher->algorithm_mac == SSL_SHA1) {
if (cipher->algorithm_enc == SSL_eNULL) {
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_null_sha1_ssl3();
} else {
*out_aead = EVP_aead_null_sha1_tls();
}
} else if (cipher->algorithm_enc == SSL_3DES) {
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_des_ede3_cbc_sha1_ssl3();
*out_fixed_iv_len = 8;
} else if (version == TLS1_VERSION) {
*out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
*out_fixed_iv_len = 8;
} else {
*out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
}
} else if (cipher->algorithm_enc == SSL_AES128) {
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_aes_128_cbc_sha1_ssl3();
*out_fixed_iv_len = 16;
} else if (version == TLS1_VERSION) {
*out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
*out_fixed_iv_len = 16;
} else {
*out_aead = EVP_aead_aes_128_cbc_sha1_tls();
}
} else if (cipher->algorithm_enc == SSL_AES256) {
if (version == SSL3_VERSION) {
*out_aead = EVP_aead_aes_256_cbc_sha1_ssl3();
*out_fixed_iv_len = 16;
} else if (version == TLS1_VERSION) {
*out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
*out_fixed_iv_len = 16;
} else {
*out_aead = EVP_aead_aes_256_cbc_sha1_tls();
}
} else {
return false;
}
*out_mac_secret_len = SHA_DIGEST_LENGTH;
} else if (cipher->algorithm_mac == SSL_SHA256) {
if (cipher->algorithm_enc == SSL_AES128) {
*out_aead = EVP_aead_aes_128_cbc_sha256_tls();
} else if (cipher->algorithm_enc == SSL_AES256) {
*out_aead = EVP_aead_aes_256_cbc_sha256_tls();
} else {
return false;
}
*out_mac_secret_len = SHA256_DIGEST_LENGTH;
} else if (cipher->algorithm_mac == SSL_SHA384) {
if (cipher->algorithm_enc != SSL_AES256) {
return false;
}
*out_aead = EVP_aead_aes_256_cbc_sha384_tls();
*out_mac_secret_len = SHA384_DIGEST_LENGTH;
} else {
return false;
}
return true;
}
const EVP_MD *ssl_get_handshake_digest(uint16_t version,
const SSL_CIPHER *cipher) {
switch (cipher->algorithm_prf) {
case SSL_HANDSHAKE_MAC_DEFAULT:
return version >= TLS1_2_VERSION ? EVP_sha256() : EVP_md5_sha1();
case SSL_HANDSHAKE_MAC_SHA256:
return EVP_sha256();
case SSL_HANDSHAKE_MAC_SHA384:
return EVP_sha384();
default:
assert(0);
return NULL;
}
}
static bool is_cipher_list_separator(char c, int is_strict) {
if (c == ':') {
return true;
}
return !is_strict && (c == ' ' || c == ';' || c == ',');
}
// rule_equals returns whether the NUL-terminated string |rule| is equal to the
// |buf_len| bytes at |buf|.
static bool rule_equals(const char *rule, const char *buf, size_t buf_len) {
// |strncmp| alone only checks that |buf| is a prefix of |rule|.
return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
}
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail) {
if (curr == *tail) {
return;
}
if (curr == *head) {
*head = curr->next;
}
if (curr->prev != NULL) {
curr->prev->next = curr->next;
}
if (curr->next != NULL) {
curr->next->prev = curr->prev;
}
(*tail)->next = curr;
curr->prev = *tail;
curr->next = NULL;
*tail = curr;
}
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail) {
if (curr == *head) {
return;
}
if (curr == *tail) {
*tail = curr->prev;
}
if (curr->next != NULL) {
curr->next->prev = curr->prev;
}
if (curr->prev != NULL) {
curr->prev->next = curr->next;
}
(*head)->prev = curr;
curr->next = *head;
curr->prev = NULL;
*head = curr;
}
static void ssl_cipher_collect_ciphers(CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p) {
size_t co_list_num = 0;
for (const SSL_CIPHER &cipher : kCiphers) {
// TLS 1.3 ciphers do not participate in this mechanism.
if (cipher.algorithm_mkey != SSL_kGENERIC) {
co_list[co_list_num].cipher = &cipher;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = false;
co_list[co_list_num].in_group = false;
co_list_num++;
}
}
// Prepare linked list from list entries.
if (co_list_num > 0) {
co_list[0].prev = NULL;
if (co_list_num > 1) {
co_list[0].next = &co_list[1];
for (size_t i = 1; i < co_list_num - 1; i++) {
co_list[i].prev = &co_list[i - 1];
co_list[i].next = &co_list[i + 1];
}
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
}
co_list[co_list_num - 1].next = NULL;
*head_p = &co_list[0];
*tail_p = &co_list[co_list_num - 1];
}
}
// ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
// parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
// head and tail of the list to |*head_p| and |*tail_p|, respectively.
//
// - If |cipher_id| is non-zero, only that cipher is selected.
// - Otherwise, if |strength_bits| is non-negative, it selects ciphers
// of that strength.
// - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and
// |min_version|.
static void ssl_cipher_apply_rule(
uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth,
uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule,
int strength_bits, bool in_group, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p) {
CIPHER_ORDER *head, *tail, *curr, *next, *last;
const SSL_CIPHER *cp;
bool reverse = false;
if (cipher_id == 0 && strength_bits == -1 && min_version == 0 &&
(alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) {
// The rule matches nothing, so bail early.
return;
}
if (rule == CIPHER_DEL) {
// needed to maintain sorting between currently deleted ciphers
reverse = true;
}
head = *head_p;
tail = *tail_p;
if (reverse) {
next = tail;
last = head;
} else {
next = head;
last = tail;
}
curr = NULL;
for (;;) {
if (curr == last) {
break;
}
curr = next;
if (curr == NULL) {
break;
}
next = reverse ? curr->prev : curr->next;
cp = curr->cipher;
// Selection criteria is either a specific cipher, the value of
// |strength_bits|, or the algorithms used.
if (cipher_id != 0) {
if (cipher_id != cp->id) {
continue;
}
} else if (strength_bits >= 0) {
if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) {
continue;
}
} else {
if (!(alg_mkey & cp->algorithm_mkey) ||
!(alg_auth & cp->algorithm_auth) ||
!(alg_enc & cp->algorithm_enc) ||
!(alg_mac & cp->algorithm_mac) ||
(min_version != 0 && SSL_CIPHER_get_min_version(cp) != min_version) ||
// The NULL cipher must be selected explicitly.
cp->algorithm_enc == SSL_eNULL) {
continue;
}
}
// add the cipher if it has not been added yet.
if (rule == CIPHER_ADD) {
// reverse == false
if (!curr->active) {
ll_append_tail(&head, curr, &tail);
curr->active = true;
curr->in_group = in_group;
}
}
// Move the added cipher to this location
else if (rule == CIPHER_ORD) {
// reverse == false
if (curr->active) {
ll_append_tail(&head, curr, &tail);
curr->in_group = false;
}
} else if (rule == CIPHER_DEL) {
// reverse == true
if (curr->active) {
// most recently deleted ciphersuites get best positions
// for any future CIPHER_ADD (note that the CIPHER_DEL loop
// works in reverse to maintain the order)
ll_append_head(&head, curr, &tail);
curr->active = false;
curr->in_group = false;
}
} else if (rule == CIPHER_KILL) {
// reverse == false
if (head == curr) {
head = curr->next;
} else {
curr->prev->next = curr->next;
}
if (tail == curr) {
tail = curr->prev;
}
curr->active = false;
if (curr->next != NULL) {
curr->next->prev = curr->prev;
}
if (curr->prev != NULL) {
curr->prev->next = curr->next;
}
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static bool ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p) {
// This routine sorts the ciphers with descending strength. The sorting must
// keep the pre-sorted sequence, so we apply the normal sorting routine as
// '+' movement to the end of the list.
int max_strength_bits = 0;
CIPHER_ORDER *curr = *head_p;
while (curr != NULL) {
if (curr->active &&
SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) {
max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL);
}
curr = curr->next;
}
Array<int> number_uses;
if (!number_uses.Init(max_strength_bits + 1)) {
return false;
}
OPENSSL_memset(number_uses.data(), 0, (max_strength_bits + 1) * sizeof(int));
// Now find the strength_bits values actually used.
curr = *head_p;
while (curr != NULL) {
if (curr->active) {
number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++;
}
curr = curr->next;
}
// Go through the list of used strength_bits values in descending order.
for (int i = max_strength_bits; i >= 0; i--) {
if (number_uses[i] > 0) {
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, false, head_p,
tail_p);
}
}
return true;
}
static bool ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p, bool strict) {
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
uint16_t min_version;
const char *l, *buf;
int rule;
bool multi, skip_rule, in_group = false, has_group = false;
size_t j, buf_len;
uint32_t cipher_id;
char ch;
l = rule_str;
for (;;) {
ch = *l;
if (ch == '\0') {
break; // done
}
if (in_group) {
if (ch == ']') {
if (*tail_p) {
(*tail_p)->in_group = false;
}
in_group = false;
l++;
continue;
}
if (ch == '|') {
rule = CIPHER_ADD;
l++;
continue;
} else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') &&
!(ch >= '0' && ch <= '9')) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
return false;
} else {
rule = CIPHER_ADD;
}
} else if (ch == '-') {
rule = CIPHER_DEL;
l++;
} else if (ch == '+') {
rule = CIPHER_ORD;
l++;
} else if (ch == '!') {
rule = CIPHER_KILL;
l++;
} else if (ch == '@') {
rule = CIPHER_SPECIAL;
l++;
} else if (ch == '[') {
assert(!in_group);
in_group = true;
has_group = true;
l++;
continue;
} else {
rule = CIPHER_ADD;
}
// If preference groups are enabled, the only legal operator is +.
// Otherwise the in_group bits will get mixed up.
if (has_group && rule != CIPHER_ADD) {
OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
return false;
}
if (is_cipher_list_separator(ch, strict)) {
l++;
continue;
}
multi = false;
cipher_id = 0;
alg_mkey = ~0u;
alg_auth = ~0u;
alg_enc = ~0u;
alg_mac = ~0u;
min_version = 0;
skip_rule = false;
for (;;) {
ch = *l;
buf = l;
buf_len = 0;
while ((ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9') ||
(ch >= 'a' && ch <= 'z') || ch == '-' || ch == '.' || ch == '_') {
ch = *(++l);
buf_len++;
}
if (buf_len == 0) {
// We hit something we cannot deal with, it is no command or separator
// nor alphanumeric, so we call this an error.
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
return false;
}
if (rule == CIPHER_SPECIAL) {
break;
}
// Look for a matching exact cipher. These aren't allowed in multipart
// rules.
if (!multi && ch != '+') {
for (j = 0; j < kCiphersLen; j++) {
const SSL_CIPHER *cipher = &kCiphers[j];
if (rule_equals(cipher->name, buf, buf_len) ||
rule_equals(cipher->standard_name, buf, buf_len)) {
cipher_id = cipher->id;
break;
}
}
}
if (cipher_id == 0) {
// If not an exact cipher, look for a matching cipher alias.
for (j = 0; j < kCipherAliasesLen; j++) {
if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
alg_mkey &= kCipherAliases[j].algorithm_mkey;
alg_auth &= kCipherAliases[j].algorithm_auth;
alg_enc &= kCipherAliases[j].algorithm_enc;
alg_mac &= kCipherAliases[j].algorithm_mac;
if (min_version != 0 &&
min_version != kCipherAliases[j].min_version) {
skip_rule = true;
} else {
min_version = kCipherAliases[j].min_version;
}
break;
}
}
if (j == kCipherAliasesLen) {
skip_rule = true;
if (strict) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
return false;
}
}
}
// Check for a multipart rule.
if (ch != '+') {
break;
}
l++;
multi = true;
}
// Ok, we have the rule, now apply it.
if (rule == CIPHER_SPECIAL) {
if (buf_len != 8 || strncmp(buf, "STRENGTH", 8) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
return false;
}
if (!ssl_cipher_strength_sort(head_p, tail_p)) {
return false;
}
// We do not support any "multi" options together with "@", so throw away
// the rest of the command, if any left, until end or ':' is found.
while (*l != '\0' && !is_cipher_list_separator(*l, strict)) {
l++;
}
} else if (!skip_rule) {
ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac,
min_version, rule, -1, in_group, head_p, tail_p);
}
}
if (in_group) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
return false;
}
return true;
}
bool ssl_create_cipher_list(
struct ssl_cipher_preference_list_st **out_cipher_list,
const char *rule_str, bool strict) {
STACK_OF(SSL_CIPHER) *cipherstack = NULL;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
uint8_t *in_group_flags = NULL;
unsigned int num_in_group_flags = 0;
struct ssl_cipher_preference_list_st *pref_list = NULL;
// Return with error if nothing to do.
if (rule_str == NULL || out_cipher_list == NULL) {
return false;
}
// Now we have to collect the available ciphers from the compiled in ciphers.
// We cannot get more than the number compiled in, so it is used for
// allocation.
co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * kCiphersLen);
if (co_list == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return false;
}
ssl_cipher_collect_ciphers(co_list, &head, &tail);
// Now arrange all ciphers by preference:
// TODO(davidben): Compute this order once and copy it.
// Everything else being equal, prefer ECDHE_ECDSA and ECDHE_RSA over other
// key exchange mechanisms
ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1,
false, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, false,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, false, &head,
&tail);
// Order the bulk ciphers. First the preferred AEAD ciphers. We prefer
// CHACHA20 unless there is hardware support for fast and constant-time
// AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the
// old one.
if (EVP_has_aes_hardware()) {
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1,
false, &head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1,
false, &head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
-1, false, &head, &tail);
} else {
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
-1, false, &head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1,
false, &head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1,
false, &head, &tail);
}
// Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC,
// 3DES_EDE_CBC_SHA.
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, false,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, false,
&head, &tail);
ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, false,
&head, &tail);
// Temporarily enable everything else for sorting
ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, false, &head,
&tail);
// Move ciphers without forward secrecy to the end.
ssl_cipher_apply_rule(0, (SSL_kRSA | SSL_kPSK), ~0u, ~0u, ~0u, 0, CIPHER_ORD,
-1, false, &head, &tail);
// Now disable everything (maintaining the ordering!)
ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, false, &head,
&tail);
// If the rule_string begins with DEFAULT, apply the default rule before
// using the (possibly available) additional rules.
const char *rule_p = rule_str;
if (strncmp(rule_str, "DEFAULT", 7) == 0) {
if (!ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail,
strict)) {
goto err;
}
rule_p += 7;
if (*rule_p == ':') {
rule_p++;
}
}
if (*rule_p != '\0' &&
!ssl_cipher_process_rulestr(rule_p, &head, &tail, strict)) {
goto err;
}
// Allocate new "cipherstack" for the result, return with error
// if we cannot get one.
cipherstack = sk_SSL_CIPHER_new_null();
if (cipherstack == NULL) {
goto err;
}
in_group_flags = (uint8_t *)OPENSSL_malloc(kCiphersLen);
if (!in_group_flags) {
goto err;
}
// The cipher selection for the list is done. The ciphers are added
// to the resulting precedence to the STACK_OF(SSL_CIPHER).
for (curr = head; curr != NULL; curr = curr->next) {
if (curr->active) {
if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
goto err;
}
in_group_flags[num_in_group_flags++] = curr->in_group;
}
}
OPENSSL_free(co_list); // Not needed any longer
co_list = NULL;
pref_list = (ssl_cipher_preference_list_st *)OPENSSL_malloc(
sizeof(struct ssl_cipher_preference_list_st));
if (!pref_list) {
goto err;
}
pref_list->ciphers = cipherstack;
pref_list->in_group_flags = NULL;
if (num_in_group_flags) {
pref_list->in_group_flags = (uint8_t *)OPENSSL_malloc(num_in_group_flags);
if (!pref_list->in_group_flags) {
goto err;
}
OPENSSL_memcpy(pref_list->in_group_flags, in_group_flags,
num_in_group_flags);
}
OPENSSL_free(in_group_flags);
in_group_flags = NULL;
if (*out_cipher_list != NULL) {
ssl_cipher_preference_list_free(*out_cipher_list);
}
*out_cipher_list = pref_list;
pref_list = NULL;
// Configuring an empty cipher list is an error but still updates the
// output.
if (sk_SSL_CIPHER_num((*out_cipher_list)->ciphers) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
return false;
}
return true;
err:
OPENSSL_free(co_list);
OPENSSL_free(in_group_flags);
sk_SSL_CIPHER_free(cipherstack);
if (pref_list) {
OPENSSL_free(pref_list->in_group_flags);
}
OPENSSL_free(pref_list);
return false;
}
uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) {
uint32_t id = cipher->id;
// All ciphers are SSLv3.
assert((id & 0xff000000) == 0x03000000);
return id & 0xffff;
}
uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key) {
switch (EVP_PKEY_id(key)) {
case EVP_PKEY_RSA:
return SSL_aRSA;
case EVP_PKEY_EC:
case EVP_PKEY_ED25519:
// Ed25519 keys in TLS 1.2 repurpose the ECDSA ciphers.
return SSL_aECDSA;
default:
return 0;
}
}
bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) {
return (cipher->algorithm_auth & SSL_aCERT) != 0;
}
bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
// Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. It is
// optional or omitted in all others.
return (cipher->algorithm_mkey & SSL_kECDHE) != 0;
}
size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
size_t block_size;
switch (cipher->algorithm_enc) {
case SSL_3DES:
block_size = 8;
break;
case SSL_AES128:
case SSL_AES256:
block_size = 16;
break;
default:
return 0;
}
// All supported TLS 1.0 ciphers use SHA-1.
assert(cipher->algorithm_mac == SSL_SHA1);
size_t ret = 1 + SHA_DIGEST_LENGTH;
ret += block_size - (ret % block_size);
return ret;
}
} // namespace bssl
using namespace bssl;
const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
SSL_CIPHER c;
c.id = 0x03000000L | value;
return reinterpret_cast<const SSL_CIPHER *>(bsearch(
&c, kCiphers, kCiphersLen, sizeof(SSL_CIPHER), ssl_cipher_id_cmp));
}
uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }
int SSL_CIPHER_is_aead(const SSL_CIPHER *cipher) {
return (cipher->algorithm_mac & SSL_AEAD) != 0;
}
int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *cipher) {
switch (cipher->algorithm_enc) {
case SSL_eNULL:
return NID_undef;
case SSL_3DES:
return NID_des_ede3_cbc;
case SSL_AES128:
return NID_aes_128_cbc;
case SSL_AES256:
return NID_aes_256_cbc;
case SSL_AES128GCM:
return NID_aes_128_gcm;
case SSL_AES256GCM:
return NID_aes_256_gcm;
case SSL_CHACHA20POLY1305:
return NID_chacha20_poly1305;
}
assert(0);
return NID_undef;
}
int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *cipher) {
switch (cipher->algorithm_mac) {
case SSL_AEAD:
return NID_undef;
case SSL_SHA1:
return NID_sha1;
case SSL_SHA256:
return NID_sha256;
case SSL_SHA384:
return NID_sha384;
}
assert(0);
return NID_undef;
}
int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *cipher) {
switch (cipher->algorithm_mkey) {
case SSL_kRSA:
return NID_kx_rsa;
case SSL_kECDHE:
return NID_kx_ecdhe;
case SSL_kPSK:
return NID_kx_psk;
case SSL_kGENERIC:
return NID_kx_any;
}
assert(0);
return NID_undef;
}
int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *cipher) {
switch (cipher->algorithm_auth) {
case SSL_aRSA:
return NID_auth_rsa;
case SSL_aECDSA:
return NID_auth_ecdsa;
case SSL_aPSK:
return NID_auth_psk;
case SSL_aGENERIC:
return NID_auth_any;
}
assert(0);
return NID_undef;
}
int SSL_CIPHER_get_prf_nid(const SSL_CIPHER *cipher) {
switch (cipher->algorithm_prf) {
case SSL_HANDSHAKE_MAC_DEFAULT:
return NID_md5_sha1;
case SSL_HANDSHAKE_MAC_SHA256:
return NID_sha256;
case SSL_HANDSHAKE_MAC_SHA384:
return NID_sha384;
}
assert(0);
return NID_undef;
}
int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) {
return (cipher->algorithm_enc & SSL_eNULL) == 0 &&
cipher->algorithm_mac != SSL_AEAD;
}
uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) {
if (cipher->algorithm_mkey == SSL_kGENERIC ||
cipher->algorithm_auth == SSL_aGENERIC) {
return TLS1_3_VERSION;
}
if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) {
// Cipher suites before TLS 1.2 use the default PRF, while all those added
// afterwards specify a particular hash.
return TLS1_2_VERSION;
}
return SSL3_VERSION;
}
uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) {
if (cipher->algorithm_mkey == SSL_kGENERIC ||
cipher->algorithm_auth == SSL_aGENERIC) {
return TLS1_3_VERSION;
}
return TLS1_2_VERSION;
}
// return the actual cipher being used
const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
if (cipher != NULL) {
return cipher->name;
}
return "(NONE)";
}
const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher) {
return cipher->standard_name;
}
const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
if (cipher == NULL) {
return "";
}
switch (cipher->algorithm_mkey) {
case SSL_kRSA:
return "RSA";
case SSL_kECDHE:
switch (cipher->algorithm_auth) {
case SSL_aECDSA:
return "ECDHE_ECDSA";
case SSL_aRSA:
return "ECDHE_RSA";
case SSL_aPSK:
return "ECDHE_PSK";
default:
assert(0);
return "UNKNOWN";
}
case SSL_kPSK:
assert(cipher->algorithm_auth == SSL_aPSK);
return "PSK";
case SSL_kGENERIC:
assert(cipher->algorithm_auth == SSL_aGENERIC);
return "GENERIC";
default:
assert(0);
return "UNKNOWN";
}
}
char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) {
if (cipher == NULL) {
return NULL;
}
return OPENSSL_strdup(SSL_CIPHER_standard_name(cipher));
}
int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
if (cipher == NULL) {
return 0;
}
int alg_bits, strength_bits;
switch (cipher->algorithm_enc) {
case SSL_AES128:
case SSL_AES128GCM:
alg_bits = 128;
strength_bits = 128;
break;
case SSL_AES256:
case SSL_AES256GCM:
case SSL_CHACHA20POLY1305:
alg_bits = 256;
strength_bits = 256;
break;
case SSL_3DES:
alg_bits = 168;
strength_bits = 112;
break;
case SSL_eNULL:
alg_bits = 0;
strength_bits = 0;
break;
default:
assert(0);
alg_bits = 0;
strength_bits = 0;
}
if (out_alg_bits != NULL) {
*out_alg_bits = alg_bits;
}
return strength_bits;
}
const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
int len) {
const char *kx, *au, *enc, *mac;
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
alg_mkey = cipher->algorithm_mkey;
alg_auth = cipher->algorithm_auth;
alg_enc = cipher->algorithm_enc;
alg_mac = cipher->algorithm_mac;
switch (alg_mkey) {
case SSL_kRSA:
kx = "RSA";
break;
case SSL_kECDHE:
kx = "ECDH";
break;
case SSL_kPSK:
kx = "PSK";
break;
case SSL_kGENERIC:
kx = "GENERIC";
break;
default:
kx = "unknown";
}
switch (alg_auth) {
case SSL_aRSA:
au = "RSA";
break;
case SSL_aECDSA:
au = "ECDSA";
break;
case SSL_aPSK:
au = "PSK";
break;
case SSL_aGENERIC:
au = "GENERIC";
break;
default:
au = "unknown";
break;
}
switch (alg_enc) {
case SSL_3DES:
enc = "3DES(168)";
break;
case SSL_AES128:
enc = "AES(128)";
break;
case SSL_AES256:
enc = "AES(256)";
break;
case SSL_AES128GCM:
enc = "AESGCM(128)";
break;
case SSL_AES256GCM:
enc = "AESGCM(256)";
break;
case SSL_CHACHA20POLY1305:
enc = "ChaCha20-Poly1305";
break;
case SSL_eNULL:
enc="None";
break;
default:
enc = "unknown";
break;
}
switch (alg_mac) {
case SSL_SHA1:
mac = "SHA1";
break;
case SSL_SHA256:
mac = "SHA256";
break;
case SSL_SHA384:
mac = "SHA384";
break;
case SSL_AEAD:
mac = "AEAD";
break;
default:
mac = "unknown";
break;
}
if (buf == NULL) {
len = 128;
buf = (char *)OPENSSL_malloc(len);
if (buf == NULL) {
return NULL;
}
} else if (len < 128) {
return "Buffer too small";
}
BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n",
cipher->name, kx, au, enc, mac);
return buf;
}
const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
return "TLSv1/SSLv3";
}
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; }
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }
const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }
void SSL_COMP_free_compression_methods(void) {}