boringssl/ssl/tls_record.cc
David Benjamin e8d0746b88 Prevent writing when write_shutdown is set.
Ideally we'd put this deep in the record layer, but sending alerts
currently awkwardly sets the field early, so we can't quite lock it out
this deep down.

This is mostly a sanity-check, but a later CL will fix SSL_shutdown's
post-handshake message processing, so this will help catch errors there.

Change-Id: I78e627c19547dbcdc85fb168795240d692baf031
Reviewed-on: https://boringssl-review.googlesource.com/21884
Commit-Queue: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Steven Valdez <svaldez@google.com>
2017-10-17 20:18:21 +00:00

709 lines
26 KiB
C++

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "internal.h"
#include "../crypto/internal.h"
namespace bssl {
// kMaxEmptyRecords is the number of consecutive, empty records that will be
// processed. Without this limit an attacker could send empty records at a
// faster rate than we can process and cause record processing to loop
// forever.
static const uint8_t kMaxEmptyRecords = 32;
// kMaxEarlyDataSkipped is the maximum number of rejected early data bytes that
// will be skipped. Without this limit an attacker could send records at a
// faster rate than we can process and cause trial decryption to loop forever.
// This value should be slightly above kMaxEarlyDataAccepted, which is measured
// in plaintext.
static const size_t kMaxEarlyDataSkipped = 16384;
// kMaxWarningAlerts is the number of consecutive warning alerts that will be
// processed.
static const uint8_t kMaxWarningAlerts = 4;
// ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher
// state needs record-splitting and zero otherwise.
static int ssl_needs_record_splitting(const SSL *ssl) {
#if !defined(BORINGSSL_UNSAFE_FUZZER_MODE)
return !ssl->s3->aead_write_ctx->is_null_cipher() &&
ssl->s3->aead_write_ctx->ProtocolVersion() < TLS1_1_VERSION &&
(ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 &&
SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher());
#else
return 0;
#endif
}
int ssl_record_sequence_update(uint8_t *seq, size_t seq_len) {
for (size_t i = seq_len - 1; i < seq_len; i--) {
++seq[i];
if (seq[i] != 0) {
return 1;
}
}
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
size_t ssl_record_prefix_len(const SSL *ssl) {
size_t header_len;
if (SSL_is_dtls(ssl)) {
header_len = DTLS1_RT_HEADER_LENGTH;
} else {
header_len = SSL3_RT_HEADER_LENGTH;
}
return header_len + ssl->s3->aead_read_ctx->ExplicitNonceLen();
}
size_t ssl_seal_align_prefix_len(const SSL *ssl) {
if (SSL_is_dtls(ssl)) {
return DTLS1_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen();
}
size_t ret =
SSL3_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen();
if (ssl_needs_record_splitting(ssl)) {
ret += SSL3_RT_HEADER_LENGTH;
ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher());
}
return ret;
}
static enum ssl_open_record_t do_tls_open_record(SSL *ssl, uint8_t *out_type,
Span<uint8_t> *out,
size_t *out_consumed,
uint8_t *out_alert,
Span<uint8_t> in) {
// If there is an unprocessed handshake message or we are already buffering
// too much, stop before decrypting another handshake record.
if (!tls_can_accept_handshake_data(ssl, out_alert)) {
return ssl_open_record_error;
}
CBS cbs = CBS(in);
// Decode the record header.
uint8_t type;
uint16_t version, ciphertext_len;
if (!CBS_get_u8(&cbs, &type) ||
!CBS_get_u16(&cbs, &version) ||
!CBS_get_u16(&cbs, &ciphertext_len)) {
*out_consumed = SSL3_RT_HEADER_LENGTH;
return ssl_open_record_partial;
}
bool version_ok;
if (ssl->s3->aead_read_ctx->is_null_cipher()) {
// Only check the first byte. Enforcing beyond that can prevent decoding
// version negotiation failure alerts.
version_ok = (version >> 8) == SSL3_VERSION_MAJOR;
} else {
version_ok = version == ssl->s3->aead_read_ctx->RecordVersion();
}
if (!version_ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
*out_alert = SSL_AD_PROTOCOL_VERSION;
return ssl_open_record_error;
}
// Check the ciphertext length.
if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
*out_alert = SSL_AD_RECORD_OVERFLOW;
return ssl_open_record_error;
}
// Extract the body.
CBS body;
if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) {
*out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len;
return ssl_open_record_partial;
}
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER,
in.subspan(0, SSL3_RT_HEADER_LENGTH));
*out_consumed = in.size() - CBS_len(&cbs);
// Skip early data received when expecting a second ClientHello if we rejected
// 0RTT.
if (ssl->s3->skip_early_data &&
ssl->s3->aead_read_ctx->is_null_cipher() &&
type == SSL3_RT_APPLICATION_DATA) {
goto skipped_data;
}
// Decrypt the body in-place.
if (!ssl->s3->aead_read_ctx->Open(
out, type, version, ssl->s3->read_sequence,
MakeSpan(const_cast<uint8_t *>(CBS_data(&body)), CBS_len(&body)))) {
if (ssl->s3->skip_early_data && !ssl->s3->aead_read_ctx->is_null_cipher()) {
ERR_clear_error();
goto skipped_data;
}
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
*out_alert = SSL_AD_BAD_RECORD_MAC;
return ssl_open_record_error;
}
ssl->s3->skip_early_data = false;
if (!ssl_record_sequence_update(ssl->s3->read_sequence, 8)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return ssl_open_record_error;
}
// TLS 1.3 hides the record type inside the encrypted data.
if (!ssl->s3->aead_read_ctx->is_null_cipher() &&
ssl->s3->aead_read_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
// The outer record type is always application_data.
if (type != SSL3_RT_APPLICATION_DATA) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_OUTER_RECORD_TYPE);
*out_alert = SSL_AD_DECODE_ERROR;
return ssl_open_record_error;
}
do {
if (out->empty()) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
*out_alert = SSL_AD_DECRYPT_ERROR;
return ssl_open_record_error;
}
type = out->back();
*out = out->subspan(0, out->size() - 1);
} while (type == 0);
}
// Check the plaintext length.
if (out->size() > SSL3_RT_MAX_PLAIN_LENGTH) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
*out_alert = SSL_AD_RECORD_OVERFLOW;
return ssl_open_record_error;
}
// Limit the number of consecutive empty records.
if (out->empty()) {
ssl->s3->empty_record_count++;
if (ssl->s3->empty_record_count > kMaxEmptyRecords) {
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
return ssl_open_record_error;
}
// Apart from the limit, empty records are returned up to the caller. This
// allows the caller to reject records of the wrong type.
} else {
ssl->s3->empty_record_count = 0;
}
if (type == SSL3_RT_ALERT) {
// Return end_of_early_data alerts as-is for the caller to process.
if (out->size() == 2 &&
(*out)[0] == SSL3_AL_WARNING &&
(*out)[1] == TLS1_AD_END_OF_EARLY_DATA) {
*out_type = type;
return ssl_open_record_success;
}
return ssl_process_alert(ssl, out_alert, *out);
}
// Handshake messages may not interleave with any other record type.
if (type != SSL3_RT_HANDSHAKE &&
tls_has_unprocessed_handshake_data(ssl)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
return ssl_open_record_error;
}
ssl->s3->warning_alert_count = 0;
*out_type = type;
return ssl_open_record_success;
skipped_data:
ssl->s3->early_data_skipped += *out_consumed;
if (ssl->s3->early_data_skipped < *out_consumed) {
ssl->s3->early_data_skipped = kMaxEarlyDataSkipped + 1;
}
if (ssl->s3->early_data_skipped > kMaxEarlyDataSkipped) {
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA);
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
return ssl_open_record_error;
}
return ssl_open_record_discard;
}
enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
Span<uint8_t> *out, size_t *out_consumed,
uint8_t *out_alert, Span<uint8_t> in) {
*out_consumed = 0;
switch (ssl->s3->read_shutdown) {
case ssl_shutdown_none:
break;
case ssl_shutdown_error:
ERR_restore_state(ssl->s3->read_error);
*out_alert = 0;
return ssl_open_record_error;
case ssl_shutdown_close_notify:
return ssl_open_record_close_notify;
}
enum ssl_open_record_t ret =
do_tls_open_record(ssl, out_type, out, out_consumed, out_alert, in);
if (ret == ssl_open_record_error) {
ssl_set_read_error(ssl);
}
return ret;
}
static int do_seal_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
uint8_t *out_suffix, uint8_t type, const uint8_t *in,
const size_t in_len) {
uint8_t *extra_in = NULL;
size_t extra_in_len = 0;
if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
// TLS 1.3 hides the actual record type inside the encrypted data.
extra_in = &type;
extra_in_len = 1;
}
size_t suffix_len;
if (!ssl->s3->aead_write_ctx->SuffixLen(&suffix_len, in_len, extra_in_len)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
return 0;
}
size_t ciphertext_len =
ssl->s3->aead_write_ctx->ExplicitNonceLen() + suffix_len;
if (ciphertext_len + in_len < ciphertext_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
return 0;
}
ciphertext_len += in_len;
assert(in == out || !buffers_alias(in, in_len, out, in_len));
assert(!buffers_alias(in, in_len, out_prefix, ssl_record_prefix_len(ssl)));
assert(!buffers_alias(in, in_len, out_suffix, suffix_len));
if (extra_in_len) {
out_prefix[0] = SSL3_RT_APPLICATION_DATA;
} else {
out_prefix[0] = type;
}
uint16_t record_version = ssl->s3->aead_write_ctx->RecordVersion();
out_prefix[1] = record_version >> 8;
out_prefix[2] = record_version & 0xff;
out_prefix[3] = ciphertext_len >> 8;
out_prefix[4] = ciphertext_len & 0xff;
if (!ssl->s3->aead_write_ctx->SealScatter(
out_prefix + SSL3_RT_HEADER_LENGTH, out, out_suffix, type,
record_version, ssl->s3->write_sequence, in, in_len, extra_in,
extra_in_len) ||
!ssl_record_sequence_update(ssl->s3->write_sequence, 8)) {
return 0;
}
ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER,
MakeSpan(out_prefix, SSL3_RT_HEADER_LENGTH));
return 1;
}
static size_t tls_seal_scatter_prefix_len(const SSL *ssl, uint8_t type,
size_t in_len) {
size_t ret = SSL3_RT_HEADER_LENGTH;
if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
ssl_needs_record_splitting(ssl)) {
// In the case of record splitting, the 1-byte record (of the 1/n-1 split)
// will be placed in the prefix, as will four of the five bytes of the
// record header for the main record. The final byte will replace the first
// byte of the plaintext that was used in the small record.
ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher());
ret += SSL3_RT_HEADER_LENGTH - 1;
} else {
ret += ssl->s3->aead_write_ctx->ExplicitNonceLen();
}
return ret;
}
static bool tls_seal_scatter_suffix_len(const SSL *ssl, size_t *out_suffix_len,
uint8_t type, size_t in_len) {
size_t extra_in_len = 0;
if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
// TLS 1.3 adds an extra byte for encrypted record type.
extra_in_len = 1;
}
if (type == SSL3_RT_APPLICATION_DATA && // clang-format off
in_len > 1 &&
ssl_needs_record_splitting(ssl)) {
// With record splitting enabled, the first byte gets sealed into a separate
// record which is written into the prefix.
in_len -= 1;
}
return ssl->s3->aead_write_ctx->SuffixLen(out_suffix_len, in_len, extra_in_len);
}
// tls_seal_scatter_record seals a new record of type |type| and body |in| and
// splits it between |out_prefix|, |out|, and |out_suffix|. Exactly
// |tls_seal_scatter_prefix_len| bytes are written to |out_prefix|, |in_len|
// bytes to |out|, and |tls_seal_scatter_suffix_len| bytes to |out_suffix|. It
// returns one on success and zero on error. If enabled,
// |tls_seal_scatter_record| implements TLS 1.0 CBC 1/n-1 record splitting and
// may write two records concatenated.
static int tls_seal_scatter_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
uint8_t *out_suffix, uint8_t type,
const uint8_t *in, size_t in_len) {
if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
ssl_needs_record_splitting(ssl)) {
assert(ssl->s3->aead_write_ctx->ExplicitNonceLen() == 0);
const size_t prefix_len = SSL3_RT_HEADER_LENGTH;
// Write the 1-byte fragment into |out_prefix|.
uint8_t *split_body = out_prefix + prefix_len;
uint8_t *split_suffix = split_body + 1;
if (!do_seal_record(ssl, out_prefix, split_body, split_suffix, type, in,
1)) {
return 0;
}
size_t split_record_suffix_len;
if (!ssl->s3->aead_write_ctx->SuffixLen(&split_record_suffix_len, 1, 0)) {
assert(false);
return 0;
}
const size_t split_record_len = prefix_len + 1 + split_record_suffix_len;
assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len(
ssl->s3->aead_write_ctx->cipher()) ==
split_record_len);
// Write the n-1-byte fragment. The header gets split between |out_prefix|
// (header[:-1]) and |out| (header[-1:]).
uint8_t tmp_prefix[SSL3_RT_HEADER_LENGTH];
if (!do_seal_record(ssl, tmp_prefix, out + 1, out_suffix, type, in + 1,
in_len - 1)) {
return 0;
}
assert(tls_seal_scatter_prefix_len(ssl, type, in_len) ==
split_record_len + SSL3_RT_HEADER_LENGTH - 1);
OPENSSL_memcpy(out_prefix + split_record_len, tmp_prefix,
SSL3_RT_HEADER_LENGTH - 1);
OPENSSL_memcpy(out, tmp_prefix + SSL3_RT_HEADER_LENGTH - 1, 1);
return 1;
}
return do_seal_record(ssl, out_prefix, out, out_suffix, type, in, in_len);
}
int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
uint8_t type, const uint8_t *in, size_t in_len) {
if (buffers_alias(in, in_len, out, max_out_len)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return 0;
}
const size_t prefix_len = tls_seal_scatter_prefix_len(ssl, type, in_len);
size_t suffix_len;
if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, type, in_len)) {
return false;
}
if (in_len + prefix_len < in_len ||
prefix_len + in_len + suffix_len < prefix_len + in_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
return 0;
}
if (max_out_len < in_len + prefix_len + suffix_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return 0;
}
uint8_t *prefix = out;
uint8_t *body = out + prefix_len;
uint8_t *suffix = body + in_len;
if (!tls_seal_scatter_record(ssl, prefix, body, suffix, type, in, in_len)) {
return 0;
}
*out_len = prefix_len + in_len + suffix_len;
return 1;
}
enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
Span<const uint8_t> in) {
// Alerts records may not contain fragmented or multiple alerts.
if (in.size() != 2) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
return ssl_open_record_error;
}
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_ALERT, in);
const uint8_t alert_level = in[0];
const uint8_t alert_descr = in[1];
uint16_t alert = (alert_level << 8) | alert_descr;
ssl_do_info_callback(ssl, SSL_CB_READ_ALERT, alert);
if (alert_level == SSL3_AL_WARNING) {
if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
ssl->s3->read_shutdown = ssl_shutdown_close_notify;
return ssl_open_record_close_notify;
}
// Warning alerts do not exist in TLS 1.3.
if (ssl->s3->have_version &&
ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
return ssl_open_record_error;
}
ssl->s3->warning_alert_count++;
if (ssl->s3->warning_alert_count > kMaxWarningAlerts) {
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS);
return ssl_open_record_error;
}
return ssl_open_record_discard;
}
if (alert_level == SSL3_AL_FATAL) {
OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr);
ERR_add_error_dataf("SSL alert number %d", alert_descr);
*out_alert = 0; // No alert to send back to the peer.
return ssl_open_record_error;
}
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE);
return ssl_open_record_error;
}
OpenRecordResult OpenRecord(SSL *ssl, Span<uint8_t> *out,
size_t *out_record_len, uint8_t *out_alert,
const Span<uint8_t> in) {
// This API is a work in progress and currently only works for TLS 1.2 servers
// and below.
if (SSL_in_init(ssl) ||
SSL_is_dtls(ssl) ||
ssl_protocol_version(ssl) > TLS1_2_VERSION) {
assert(false);
*out_alert = SSL_AD_INTERNAL_ERROR;
return OpenRecordResult::kError;
}
Span<uint8_t> plaintext;
uint8_t type = 0;
const ssl_open_record_t result = tls_open_record(
ssl, &type, &plaintext, out_record_len, out_alert, in);
switch (result) {
case ssl_open_record_success:
if (type != SSL3_RT_APPLICATION_DATA && type != SSL3_RT_ALERT) {
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
return OpenRecordResult::kError;
}
*out = plaintext;
return OpenRecordResult::kOK;
case ssl_open_record_discard:
return OpenRecordResult::kDiscard;
case ssl_open_record_partial:
return OpenRecordResult::kIncompleteRecord;
case ssl_open_record_close_notify:
return OpenRecordResult::kAlertCloseNotify;
case ssl_open_record_error:
return OpenRecordResult::kError;
}
assert(false);
return OpenRecordResult::kError;
}
size_t SealRecordPrefixLen(const SSL *ssl, const size_t record_len) {
return tls_seal_scatter_prefix_len(ssl, SSL3_RT_APPLICATION_DATA, record_len);
}
size_t SealRecordSuffixLen(const SSL *ssl, const size_t plaintext_len) {
assert(plaintext_len <= SSL3_RT_MAX_PLAIN_LENGTH);
size_t suffix_len;
if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, SSL3_RT_APPLICATION_DATA,
plaintext_len)) {
assert(false);
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
assert(suffix_len <= SSL3_RT_MAX_ENCRYPTED_OVERHEAD);
return suffix_len;
}
bool SealRecord(SSL *ssl, const Span<uint8_t> out_prefix,
const Span<uint8_t> out, Span<uint8_t> out_suffix,
const Span<const uint8_t> in) {
// This API is a work in progress and currently only works for TLS 1.2 servers
// and below.
if (SSL_in_init(ssl) ||
SSL_is_dtls(ssl) ||
ssl_protocol_version(ssl) > TLS1_2_VERSION) {
assert(false);
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
if (out_prefix.size() != SealRecordPrefixLen(ssl, in.size()) ||
out.size() != in.size() ||
out_suffix.size() != SealRecordSuffixLen(ssl, in.size())) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return false;
}
return tls_seal_scatter_record(ssl, out_prefix.data(), out.data(),
out_suffix.data(), SSL3_RT_APPLICATION_DATA,
in.data(), in.size());
}
} // namespace bssl
using namespace bssl;
size_t SSL_max_seal_overhead(const SSL *ssl) {
if (SSL_is_dtls(ssl)) {
return dtls_max_seal_overhead(ssl, dtls1_use_current_epoch);
}
size_t ret = SSL3_RT_HEADER_LENGTH;
ret += ssl->s3->aead_write_ctx->MaxOverhead();
// TLS 1.3 needs an extra byte for the encrypted record type.
if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
ret += 1;
}
if (ssl_needs_record_splitting(ssl)) {
ret *= 2;
}
return ret;
}