17cf2cb1d2
Most C standard library functions are undefined if passed NULL, even when the corresponding length is zero. This gives them (and, in turn, all functions which call them) surprising behavior on empty arrays. Some compilers will miscompile code due to this rule. See also https://www.imperialviolet.org/2016/06/26/nonnull.html Add OPENSSL_memcpy, etc., wrappers which avoid this problem. BUG=23 Change-Id: I95f42b23e92945af0e681264fffaf578e7f8465e Reviewed-on: https://boringssl-review.googlesource.com/12928 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
245 lines
6.9 KiB
C
245 lines
6.9 KiB
C
/* Copyright (c) 2014, Google Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/chacha.h>
|
|
#include <openssl/cpu.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
#include "../internal.h"
|
|
|
|
|
|
/* It's assumed that the operating system always has an unfailing source of
|
|
* entropy which is accessed via |CRYPTO_sysrand|. (If the operating system
|
|
* entropy source fails, it's up to |CRYPTO_sysrand| to abort the process—we
|
|
* don't try to handle it.)
|
|
*
|
|
* In addition, the hardware may provide a low-latency RNG. Intel's rdrand
|
|
* instruction is the canonical example of this. When a hardware RNG is
|
|
* available we don't need to worry about an RNG failure arising from fork()ing
|
|
* the process or moving a VM, so we can keep thread-local RNG state and XOR
|
|
* the hardware entropy in.
|
|
*
|
|
* (We assume that the OS entropy is safe from fork()ing and VM duplication.
|
|
* This might be a bit of a leap of faith, esp on Windows, but there's nothing
|
|
* that we can do about it.) */
|
|
|
|
/* rand_thread_state contains the per-thread state for the RNG. This is only
|
|
* used if the system has support for a hardware RNG. */
|
|
struct rand_thread_state {
|
|
uint8_t key[32];
|
|
uint64_t calls_used;
|
|
size_t bytes_used;
|
|
uint8_t partial_block[64];
|
|
unsigned partial_block_used;
|
|
};
|
|
|
|
/* kMaxCallsPerRefresh is the maximum number of |RAND_bytes| calls that we'll
|
|
* serve before reading a new key from the operating system. This only applies
|
|
* if we have a hardware RNG. */
|
|
static const unsigned kMaxCallsPerRefresh = 1024;
|
|
|
|
/* kMaxBytesPerRefresh is the maximum number of bytes that we'll return from
|
|
* |RAND_bytes| before reading a new key from the operating system. This only
|
|
* applies if we have a hardware RNG. */
|
|
static const uint64_t kMaxBytesPerRefresh = 1024 * 1024;
|
|
|
|
/* rand_thread_state_free frees a |rand_thread_state|. This is called when a
|
|
* thread exits. */
|
|
static void rand_thread_state_free(void *state) {
|
|
if (state == NULL) {
|
|
return;
|
|
}
|
|
|
|
OPENSSL_cleanse(state, sizeof(struct rand_thread_state));
|
|
OPENSSL_free(state);
|
|
}
|
|
|
|
#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
|
|
!defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
|
|
|
|
/* These functions are defined in asm/rdrand-x86_64.pl */
|
|
extern int CRYPTO_rdrand(uint8_t out[8]);
|
|
extern int CRYPTO_rdrand_multiple8_buf(uint8_t *buf, size_t len);
|
|
|
|
static int have_rdrand(void) {
|
|
return (OPENSSL_ia32cap_P[1] & (1u << 30)) != 0;
|
|
}
|
|
|
|
static int hwrand(uint8_t *buf, size_t len) {
|
|
if (!have_rdrand()) {
|
|
return 0;
|
|
}
|
|
|
|
const size_t len_multiple8 = len & ~7;
|
|
if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) {
|
|
return 0;
|
|
}
|
|
len -= len_multiple8;
|
|
|
|
if (len != 0) {
|
|
assert(len < 8);
|
|
|
|
uint8_t rand_buf[8];
|
|
if (!CRYPTO_rdrand(rand_buf)) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memcpy(buf + len_multiple8, rand_buf, len);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else
|
|
|
|
static int hwrand(uint8_t *buf, size_t len) {
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
int RAND_bytes(uint8_t *buf, size_t len) {
|
|
if (len == 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (!hwrand(buf, len)) {
|
|
/* Without a hardware RNG to save us from address-space duplication, the OS
|
|
* entropy is used directly. */
|
|
CRYPTO_sysrand(buf, len);
|
|
return 1;
|
|
}
|
|
|
|
struct rand_thread_state *state =
|
|
CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND);
|
|
if (state == NULL) {
|
|
state = OPENSSL_malloc(sizeof(struct rand_thread_state));
|
|
if (state == NULL ||
|
|
!CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state,
|
|
rand_thread_state_free)) {
|
|
CRYPTO_sysrand(buf, len);
|
|
return 1;
|
|
}
|
|
|
|
OPENSSL_memset(state->partial_block, 0, sizeof(state->partial_block));
|
|
state->calls_used = kMaxCallsPerRefresh;
|
|
}
|
|
|
|
if (state->calls_used >= kMaxCallsPerRefresh ||
|
|
state->bytes_used >= kMaxBytesPerRefresh) {
|
|
CRYPTO_sysrand(state->key, sizeof(state->key));
|
|
state->calls_used = 0;
|
|
state->bytes_used = 0;
|
|
state->partial_block_used = sizeof(state->partial_block);
|
|
}
|
|
|
|
if (len >= sizeof(state->partial_block)) {
|
|
size_t remaining = len;
|
|
while (remaining > 0) {
|
|
/* kMaxBytesPerCall is only 2GB, while ChaCha can handle 256GB. But this
|
|
* is sufficient and easier on 32-bit. */
|
|
static const size_t kMaxBytesPerCall = 0x80000000;
|
|
size_t todo = remaining;
|
|
if (todo > kMaxBytesPerCall) {
|
|
todo = kMaxBytesPerCall;
|
|
}
|
|
uint8_t nonce[12];
|
|
OPENSSL_memset(nonce, 0, 4);
|
|
OPENSSL_memcpy(nonce + 4, &state->calls_used, sizeof(state->calls_used));
|
|
CRYPTO_chacha_20(buf, buf, todo, state->key, nonce, 0);
|
|
buf += todo;
|
|
remaining -= todo;
|
|
state->calls_used++;
|
|
}
|
|
} else {
|
|
if (sizeof(state->partial_block) - state->partial_block_used < len) {
|
|
uint8_t nonce[12];
|
|
OPENSSL_memset(nonce, 0, 4);
|
|
OPENSSL_memcpy(nonce + 4, &state->calls_used, sizeof(state->calls_used));
|
|
CRYPTO_chacha_20(state->partial_block, state->partial_block,
|
|
sizeof(state->partial_block), state->key, nonce, 0);
|
|
state->partial_block_used = 0;
|
|
}
|
|
|
|
unsigned i;
|
|
for (i = 0; i < len; i++) {
|
|
buf[i] ^= state->partial_block[state->partial_block_used++];
|
|
}
|
|
state->calls_used++;
|
|
}
|
|
state->bytes_used += len;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int RAND_pseudo_bytes(uint8_t *buf, size_t len) {
|
|
return RAND_bytes(buf, len);
|
|
}
|
|
|
|
void RAND_seed(const void *buf, int num) {
|
|
/* OpenSSH calls |RAND_seed| before jailing on the assumption that any needed
|
|
* file descriptors etc will be opened. */
|
|
uint8_t unused;
|
|
RAND_bytes(&unused, sizeof(unused));
|
|
}
|
|
|
|
int RAND_load_file(const char *path, long num) {
|
|
if (num < 0) { /* read the "whole file" */
|
|
return 1;
|
|
} else if (num <= INT_MAX) {
|
|
return (int) num;
|
|
} else {
|
|
return INT_MAX;
|
|
}
|
|
}
|
|
|
|
const char *RAND_file_name(char *buf, size_t num) { return NULL; }
|
|
|
|
void RAND_add(const void *buf, int num, double entropy) {}
|
|
|
|
int RAND_egd(const char *path) {
|
|
return 255;
|
|
}
|
|
|
|
int RAND_poll(void) {
|
|
return 1;
|
|
}
|
|
|
|
int RAND_status(void) {
|
|
return 1;
|
|
}
|
|
|
|
static const struct rand_meth_st kSSLeayMethod = {
|
|
RAND_seed,
|
|
RAND_bytes,
|
|
RAND_cleanup,
|
|
RAND_add,
|
|
RAND_pseudo_bytes,
|
|
RAND_status,
|
|
};
|
|
|
|
RAND_METHOD *RAND_SSLeay(void) {
|
|
return (RAND_METHOD*) &kSSLeayMethod;
|
|
}
|
|
|
|
void RAND_set_rand_method(const RAND_METHOD *method) {}
|
|
|
|
void RAND_cleanup(void) {}
|