boringssl/ssl/test/runner/handshake_server.go
Adam Langley efb0e16ee5 Reject empty ALPN protocols.
https://tools.ietf.org/html/rfc7301#section-3.1 specifies that a
ProtocolName may not be empty. This change enforces this in ClientHello
and ServerHello messages.

Thanks to Doug Hogan for reporting this.

Change-Id: Iab879c83145007799b94d2725201ede1a39e4596
Reviewed-on: https://boringssl-review.googlesource.com/5390
Reviewed-by: Adam Langley <agl@google.com>
2015-07-09 22:47:14 +00:00

1039 lines
30 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/subtle"
"crypto/x509"
"encoding/asn1"
"errors"
"fmt"
"io"
"math/big"
)
// serverHandshakeState contains details of a server handshake in progress.
// It's discarded once the handshake has completed.
type serverHandshakeState struct {
c *Conn
clientHello *clientHelloMsg
hello *serverHelloMsg
suite *cipherSuite
ellipticOk bool
ecdsaOk bool
sessionState *sessionState
finishedHash finishedHash
masterSecret []byte
certsFromClient [][]byte
cert *Certificate
finishedBytes []byte
}
// serverHandshake performs a TLS handshake as a server.
func (c *Conn) serverHandshake() error {
config := c.config
// If this is the first server handshake, we generate a random key to
// encrypt the tickets with.
config.serverInitOnce.Do(config.serverInit)
c.sendHandshakeSeq = 0
c.recvHandshakeSeq = 0
hs := serverHandshakeState{
c: c,
}
isResume, err := hs.readClientHello()
if err != nil {
return err
}
// For an overview of TLS handshaking, see https://tools.ietf.org/html/rfc5246#section-7.3
if isResume {
// The client has included a session ticket and so we do an abbreviated handshake.
if err := hs.doResumeHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
if c.config.Bugs.RenewTicketOnResume {
if err := hs.sendSessionTicket(); err != nil {
return err
}
}
if err := hs.sendFinished(c.firstFinished[:]); err != nil {
return err
}
// Most retransmits are triggered by a timeout, but the final
// leg of the handshake is retransmited upon re-receiving a
// Finished.
if err := c.simulatePacketLoss(func() {
c.writeRecord(recordTypeHandshake, hs.finishedBytes)
c.dtlsFlushHandshake()
}); err != nil {
return err
}
if err := hs.readFinished(nil, isResume); err != nil {
return err
}
c.didResume = true
} else {
// The client didn't include a session ticket, or it wasn't
// valid so we do a full handshake.
if err := hs.doFullHandshake(); err != nil {
return err
}
if err := hs.establishKeys(); err != nil {
return err
}
if err := hs.readFinished(c.firstFinished[:], isResume); err != nil {
return err
}
if c.config.Bugs.AlertBeforeFalseStartTest != 0 {
c.sendAlert(c.config.Bugs.AlertBeforeFalseStartTest)
}
if c.config.Bugs.ExpectFalseStart {
if err := c.readRecord(recordTypeApplicationData); err != nil {
return fmt.Errorf("tls: peer did not false start: %s", err)
}
}
if err := hs.sendSessionTicket(); err != nil {
return err
}
if err := hs.sendFinished(nil); err != nil {
return err
}
}
c.handshakeComplete = true
copy(c.clientRandom[:], hs.clientHello.random)
copy(c.serverRandom[:], hs.hello.random)
copy(c.masterSecret[:], hs.masterSecret)
return nil
}
// readClientHello reads a ClientHello message from the client and decides
// whether we will perform session resumption.
func (hs *serverHandshakeState) readClientHello() (isResume bool, err error) {
config := hs.c.config
c := hs.c
if err := c.simulatePacketLoss(nil); err != nil {
return false, err
}
msg, err := c.readHandshake()
if err != nil {
return false, err
}
var ok bool
hs.clientHello, ok = msg.(*clientHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return false, unexpectedMessageError(hs.clientHello, msg)
}
if config.Bugs.RequireFastradioPadding && len(hs.clientHello.raw) < 1000 {
return false, errors.New("tls: ClientHello record size should be larger than 1000 bytes when padding enabled.")
}
if c.isDTLS && !config.Bugs.SkipHelloVerifyRequest {
// Per RFC 6347, the version field in HelloVerifyRequest SHOULD
// be always DTLS 1.0
helloVerifyRequest := &helloVerifyRequestMsg{
vers: VersionTLS10,
cookie: make([]byte, 32),
}
if _, err := io.ReadFull(c.config.rand(), helloVerifyRequest.cookie); err != nil {
c.sendAlert(alertInternalError)
return false, errors.New("dtls: short read from Rand: " + err.Error())
}
c.writeRecord(recordTypeHandshake, helloVerifyRequest.marshal())
c.dtlsFlushHandshake()
if err := c.simulatePacketLoss(nil); err != nil {
return false, err
}
msg, err := c.readHandshake()
if err != nil {
return false, err
}
newClientHello, ok := msg.(*clientHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return false, unexpectedMessageError(hs.clientHello, msg)
}
if !bytes.Equal(newClientHello.cookie, helloVerifyRequest.cookie) {
return false, errors.New("dtls: invalid cookie")
}
// Apart from the cookie, the two ClientHellos must
// match. Note that clientHello.equal compares the
// serialization, so we make a copy.
oldClientHelloCopy := *hs.clientHello
oldClientHelloCopy.raw = nil
oldClientHelloCopy.cookie = nil
newClientHelloCopy := *newClientHello
newClientHelloCopy.raw = nil
newClientHelloCopy.cookie = nil
if !oldClientHelloCopy.equal(&newClientHelloCopy) {
return false, errors.New("dtls: retransmitted ClientHello does not match")
}
hs.clientHello = newClientHello
}
if config.Bugs.RequireSameRenegoClientVersion && c.clientVersion != 0 {
if c.clientVersion != hs.clientHello.vers {
return false, fmt.Errorf("tls: client offered different version on renego")
}
}
c.clientVersion = hs.clientHello.vers
// Reject < 1.2 ClientHellos with signature_algorithms.
if c.clientVersion < VersionTLS12 && len(hs.clientHello.signatureAndHashes) > 0 {
return false, fmt.Errorf("tls: client included signature_algorithms before TLS 1.2")
}
if config.Bugs.IgnorePeerSignatureAlgorithmPreferences {
hs.clientHello.signatureAndHashes = config.signatureAndHashesForServer()
}
c.vers, ok = config.mutualVersion(hs.clientHello.vers)
if !ok {
c.sendAlert(alertProtocolVersion)
return false, fmt.Errorf("tls: client offered an unsupported, maximum protocol version of %x", hs.clientHello.vers)
}
c.haveVers = true
hs.hello = new(serverHelloMsg)
hs.hello.isDTLS = c.isDTLS
supportedCurve := false
preferredCurves := config.curvePreferences()
if config.Bugs.IgnorePeerCurvePreferences {
hs.clientHello.supportedCurves = preferredCurves
}
Curves:
for _, curve := range hs.clientHello.supportedCurves {
for _, supported := range preferredCurves {
if supported == curve {
supportedCurve = true
break Curves
}
}
}
supportedPointFormat := false
for _, pointFormat := range hs.clientHello.supportedPoints {
if pointFormat == pointFormatUncompressed {
supportedPointFormat = true
break
}
}
hs.ellipticOk = supportedCurve && supportedPointFormat
foundCompression := false
// We only support null compression, so check that the client offered it.
for _, compression := range hs.clientHello.compressionMethods {
if compression == compressionNone {
foundCompression = true
break
}
}
if !foundCompression {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: client does not support uncompressed connections")
}
hs.hello.vers = c.vers
hs.hello.random = make([]byte, 32)
_, err = io.ReadFull(config.rand(), hs.hello.random)
if err != nil {
c.sendAlert(alertInternalError)
return false, err
}
if !bytes.Equal(c.clientVerify, hs.clientHello.secureRenegotiation) {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: renegotiation mismatch")
}
if len(c.clientVerify) > 0 && !c.config.Bugs.EmptyRenegotiationInfo {
hs.hello.secureRenegotiation = append(hs.hello.secureRenegotiation, c.clientVerify...)
hs.hello.secureRenegotiation = append(hs.hello.secureRenegotiation, c.serverVerify...)
if c.config.Bugs.BadRenegotiationInfo {
hs.hello.secureRenegotiation[0] ^= 0x80
}
} else {
hs.hello.secureRenegotiation = hs.clientHello.secureRenegotiation
}
if c.config.Bugs.NoRenegotiationInfo {
hs.hello.secureRenegotiation = nil
}
hs.hello.compressionMethod = compressionNone
hs.hello.duplicateExtension = c.config.Bugs.DuplicateExtension
if len(hs.clientHello.serverName) > 0 {
c.serverName = hs.clientHello.serverName
}
if len(hs.clientHello.alpnProtocols) > 0 {
if proto := c.config.Bugs.ALPNProtocol; proto != nil {
hs.hello.alpnProtocol = *proto
hs.hello.alpnProtocolEmpty = len(*proto) == 0
c.clientProtocol = *proto
c.usedALPN = true
} else if selectedProto, fallback := mutualProtocol(hs.clientHello.alpnProtocols, c.config.NextProtos); !fallback {
hs.hello.alpnProtocol = selectedProto
c.clientProtocol = selectedProto
c.usedALPN = true
}
} else {
// Although sending an empty NPN extension is reasonable, Firefox has
// had a bug around this. Best to send nothing at all if
// config.NextProtos is empty. See
// https://code.google.com/p/go/issues/detail?id=5445.
if hs.clientHello.nextProtoNeg && len(config.NextProtos) > 0 {
hs.hello.nextProtoNeg = true
hs.hello.nextProtos = config.NextProtos
}
}
hs.hello.extendedMasterSecret = c.vers >= VersionTLS10 && hs.clientHello.extendedMasterSecret && !c.config.Bugs.NoExtendedMasterSecret
if len(config.Certificates) == 0 {
c.sendAlert(alertInternalError)
return false, errors.New("tls: no certificates configured")
}
hs.cert = &config.Certificates[0]
if len(hs.clientHello.serverName) > 0 {
hs.cert = config.getCertificateForName(hs.clientHello.serverName)
}
if expected := c.config.Bugs.ExpectServerName; expected != "" && expected != hs.clientHello.serverName {
return false, errors.New("tls: unexpected server name")
}
if hs.clientHello.channelIDSupported && config.RequestChannelID {
hs.hello.channelIDRequested = true
}
if hs.clientHello.srtpProtectionProfiles != nil {
SRTPLoop:
for _, p1 := range c.config.SRTPProtectionProfiles {
for _, p2 := range hs.clientHello.srtpProtectionProfiles {
if p1 == p2 {
hs.hello.srtpProtectionProfile = p1
c.srtpProtectionProfile = p1
break SRTPLoop
}
}
}
}
if c.config.Bugs.SendSRTPProtectionProfile != 0 {
hs.hello.srtpProtectionProfile = c.config.Bugs.SendSRTPProtectionProfile
}
_, hs.ecdsaOk = hs.cert.PrivateKey.(*ecdsa.PrivateKey)
// For test purposes, check that the peer never offers a session when
// renegotiating.
if c.cipherSuite != nil && len(hs.clientHello.sessionId) > 0 && c.config.Bugs.FailIfResumeOnRenego {
return false, errors.New("tls: offered resumption on renegotiation")
}
if hs.checkForResumption() {
return true, nil
}
var scsvFound bool
for _, cipherSuite := range hs.clientHello.cipherSuites {
if cipherSuite == fallbackSCSV {
scsvFound = true
break
}
}
if !scsvFound && config.Bugs.FailIfNotFallbackSCSV {
return false, errors.New("tls: no fallback SCSV found when expected")
} else if scsvFound && !config.Bugs.FailIfNotFallbackSCSV {
return false, errors.New("tls: fallback SCSV found when not expected")
}
if config.Bugs.IgnorePeerCipherPreferences {
hs.clientHello.cipherSuites = c.config.cipherSuites()
}
var preferenceList, supportedList []uint16
if c.config.PreferServerCipherSuites {
preferenceList = c.config.cipherSuites()
supportedList = hs.clientHello.cipherSuites
} else {
preferenceList = hs.clientHello.cipherSuites
supportedList = c.config.cipherSuites()
}
for _, id := range preferenceList {
if hs.suite = c.tryCipherSuite(id, supportedList, c.vers, hs.ellipticOk, hs.ecdsaOk); hs.suite != nil {
break
}
}
if hs.suite == nil {
c.sendAlert(alertHandshakeFailure)
return false, errors.New("tls: no cipher suite supported by both client and server")
}
return false, nil
}
// checkForResumption returns true if we should perform resumption on this connection.
func (hs *serverHandshakeState) checkForResumption() bool {
c := hs.c
if len(hs.clientHello.sessionTicket) > 0 {
if c.config.SessionTicketsDisabled {
return false
}
var ok bool
if hs.sessionState, ok = c.decryptTicket(hs.clientHello.sessionTicket); !ok {
return false
}
} else {
if c.config.ServerSessionCache == nil {
return false
}
var ok bool
sessionId := string(hs.clientHello.sessionId)
if hs.sessionState, ok = c.config.ServerSessionCache.Get(sessionId); !ok {
return false
}
}
// Never resume a session for a different SSL version.
if !c.config.Bugs.AllowSessionVersionMismatch && c.vers != hs.sessionState.vers {
return false
}
cipherSuiteOk := false
// Check that the client is still offering the ciphersuite in the session.
for _, id := range hs.clientHello.cipherSuites {
if id == hs.sessionState.cipherSuite {
cipherSuiteOk = true
break
}
}
if !cipherSuiteOk {
return false
}
// Check that we also support the ciphersuite from the session.
hs.suite = c.tryCipherSuite(hs.sessionState.cipherSuite, c.config.cipherSuites(), hs.sessionState.vers, hs.ellipticOk, hs.ecdsaOk)
if hs.suite == nil {
return false
}
sessionHasClientCerts := len(hs.sessionState.certificates) != 0
needClientCerts := c.config.ClientAuth == RequireAnyClientCert || c.config.ClientAuth == RequireAndVerifyClientCert
if needClientCerts && !sessionHasClientCerts {
return false
}
if sessionHasClientCerts && c.config.ClientAuth == NoClientCert {
return false
}
return true
}
func (hs *serverHandshakeState) doResumeHandshake() error {
c := hs.c
hs.hello.cipherSuite = hs.suite.id
if c.config.Bugs.SendCipherSuite != 0 {
hs.hello.cipherSuite = c.config.Bugs.SendCipherSuite
}
// We echo the client's session ID in the ServerHello to let it know
// that we're doing a resumption.
hs.hello.sessionId = hs.clientHello.sessionId
hs.hello.ticketSupported = c.config.Bugs.RenewTicketOnResume
hs.finishedHash = newFinishedHash(c.vers, hs.suite)
hs.finishedHash.discardHandshakeBuffer()
hs.writeClientHash(hs.clientHello.marshal())
hs.writeServerHash(hs.hello.marshal())
c.writeRecord(recordTypeHandshake, hs.hello.marshal())
if len(hs.sessionState.certificates) > 0 {
if _, err := hs.processCertsFromClient(hs.sessionState.certificates); err != nil {
return err
}
}
hs.masterSecret = hs.sessionState.masterSecret
c.extendedMasterSecret = hs.sessionState.extendedMasterSecret
return nil
}
func (hs *serverHandshakeState) doFullHandshake() error {
config := hs.c.config
c := hs.c
isPSK := hs.suite.flags&suitePSK != 0
if !isPSK && hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0 {
hs.hello.ocspStapling = true
}
if hs.clientHello.sctListSupported && len(hs.cert.SignedCertificateTimestampList) > 0 {
hs.hello.sctList = hs.cert.SignedCertificateTimestampList
}
hs.hello.ticketSupported = hs.clientHello.ticketSupported && !config.SessionTicketsDisabled && c.vers > VersionSSL30
hs.hello.cipherSuite = hs.suite.id
if config.Bugs.SendCipherSuite != 0 {
hs.hello.cipherSuite = config.Bugs.SendCipherSuite
}
c.extendedMasterSecret = hs.hello.extendedMasterSecret
// Generate a session ID if we're to save the session.
if !hs.hello.ticketSupported && config.ServerSessionCache != nil {
hs.hello.sessionId = make([]byte, 32)
if _, err := io.ReadFull(config.rand(), hs.hello.sessionId); err != nil {
c.sendAlert(alertInternalError)
return errors.New("tls: short read from Rand: " + err.Error())
}
}
hs.finishedHash = newFinishedHash(c.vers, hs.suite)
hs.writeClientHash(hs.clientHello.marshal())
hs.writeServerHash(hs.hello.marshal())
c.writeRecord(recordTypeHandshake, hs.hello.marshal())
if !isPSK {
certMsg := new(certificateMsg)
if !config.Bugs.EmptyCertificateList {
certMsg.certificates = hs.cert.Certificate
}
if !config.Bugs.UnauthenticatedECDH {
certMsgBytes := certMsg.marshal()
if config.Bugs.WrongCertificateMessageType {
certMsgBytes[0] += 42
}
hs.writeServerHash(certMsgBytes)
c.writeRecord(recordTypeHandshake, certMsgBytes)
}
}
if hs.hello.ocspStapling && !c.config.Bugs.SkipCertificateStatus {
certStatus := new(certificateStatusMsg)
certStatus.statusType = statusTypeOCSP
certStatus.response = hs.cert.OCSPStaple
hs.writeServerHash(certStatus.marshal())
c.writeRecord(recordTypeHandshake, certStatus.marshal())
}
keyAgreement := hs.suite.ka(c.vers)
skx, err := keyAgreement.generateServerKeyExchange(config, hs.cert, hs.clientHello, hs.hello)
if err != nil {
c.sendAlert(alertHandshakeFailure)
return err
}
if skx != nil && !config.Bugs.SkipServerKeyExchange {
hs.writeServerHash(skx.marshal())
c.writeRecord(recordTypeHandshake, skx.marshal())
}
if config.ClientAuth >= RequestClientCert {
// Request a client certificate
certReq := &certificateRequestMsg{
certificateTypes: config.ClientCertificateTypes,
}
if certReq.certificateTypes == nil {
certReq.certificateTypes = []byte{
byte(CertTypeRSASign),
byte(CertTypeECDSASign),
}
}
if c.vers >= VersionTLS12 {
certReq.hasSignatureAndHash = true
if !config.Bugs.NoSignatureAndHashes {
certReq.signatureAndHashes = config.signatureAndHashesForServer()
}
}
// An empty list of certificateAuthorities signals to
// the client that it may send any certificate in response
// to our request. When we know the CAs we trust, then
// we can send them down, so that the client can choose
// an appropriate certificate to give to us.
if config.ClientCAs != nil {
certReq.certificateAuthorities = config.ClientCAs.Subjects()
}
hs.writeServerHash(certReq.marshal())
c.writeRecord(recordTypeHandshake, certReq.marshal())
}
helloDone := new(serverHelloDoneMsg)
hs.writeServerHash(helloDone.marshal())
c.writeRecord(recordTypeHandshake, helloDone.marshal())
c.dtlsFlushHandshake()
var pub crypto.PublicKey // public key for client auth, if any
if err := c.simulatePacketLoss(nil); err != nil {
return err
}
msg, err := c.readHandshake()
if err != nil {
return err
}
var ok bool
// If we requested a client certificate, then the client must send a
// certificate message, even if it's empty.
if config.ClientAuth >= RequestClientCert {
var certMsg *certificateMsg
if certMsg, ok = msg.(*certificateMsg); !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
hs.writeClientHash(certMsg.marshal())
if len(certMsg.certificates) == 0 {
// The client didn't actually send a certificate
switch config.ClientAuth {
case RequireAnyClientCert, RequireAndVerifyClientCert:
c.sendAlert(alertBadCertificate)
return errors.New("tls: client didn't provide a certificate")
}
}
pub, err = hs.processCertsFromClient(certMsg.certificates)
if err != nil {
return err
}
msg, err = c.readHandshake()
if err != nil {
return err
}
}
// Get client key exchange
ckx, ok := msg.(*clientKeyExchangeMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(ckx, msg)
}
hs.writeClientHash(ckx.marshal())
preMasterSecret, err := keyAgreement.processClientKeyExchange(config, hs.cert, ckx, c.vers)
if err != nil {
c.sendAlert(alertHandshakeFailure)
return err
}
if c.extendedMasterSecret {
hs.masterSecret = extendedMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.finishedHash)
} else {
if c.config.Bugs.RequireExtendedMasterSecret {
return errors.New("tls: extended master secret required but not supported by peer")
}
hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.clientHello.random, hs.hello.random)
}
// If we received a client cert in response to our certificate request message,
// the client will send us a certificateVerifyMsg immediately after the
// clientKeyExchangeMsg. This message is a digest of all preceding
// handshake-layer messages that is signed using the private key corresponding
// to the client's certificate. This allows us to verify that the client is in
// possession of the private key of the certificate.
if len(c.peerCertificates) > 0 {
msg, err = c.readHandshake()
if err != nil {
return err
}
certVerify, ok := msg.(*certificateVerifyMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certVerify, msg)
}
// Determine the signature type.
var signatureAndHash signatureAndHash
if certVerify.hasSignatureAndHash {
signatureAndHash = certVerify.signatureAndHash
if !isSupportedSignatureAndHash(signatureAndHash, config.signatureAndHashesForServer()) {
return errors.New("tls: unsupported hash function for client certificate")
}
} else {
// Before TLS 1.2 the signature algorithm was implicit
// from the key type, and only one hash per signature
// algorithm was possible. Leave the hash as zero.
switch pub.(type) {
case *ecdsa.PublicKey:
signatureAndHash.signature = signatureECDSA
case *rsa.PublicKey:
signatureAndHash.signature = signatureRSA
}
}
switch key := pub.(type) {
case *ecdsa.PublicKey:
if signatureAndHash.signature != signatureECDSA {
err = errors.New("tls: bad signature type for client's ECDSA certificate")
break
}
ecdsaSig := new(ecdsaSignature)
if _, err = asn1.Unmarshal(certVerify.signature, ecdsaSig); err != nil {
break
}
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
err = errors.New("ECDSA signature contained zero or negative values")
break
}
var digest []byte
digest, _, err = hs.finishedHash.hashForClientCertificate(signatureAndHash, hs.masterSecret)
if err != nil {
break
}
if !ecdsa.Verify(key, digest, ecdsaSig.R, ecdsaSig.S) {
err = errors.New("ECDSA verification failure")
break
}
case *rsa.PublicKey:
if signatureAndHash.signature != signatureRSA {
err = errors.New("tls: bad signature type for client's RSA certificate")
break
}
var digest []byte
var hashFunc crypto.Hash
digest, hashFunc, err = hs.finishedHash.hashForClientCertificate(signatureAndHash, hs.masterSecret)
if err != nil {
break
}
err = rsa.VerifyPKCS1v15(key, hashFunc, digest, certVerify.signature)
}
if err != nil {
c.sendAlert(alertBadCertificate)
return errors.New("could not validate signature of connection nonces: " + err.Error())
}
hs.writeClientHash(certVerify.marshal())
}
hs.finishedHash.discardHandshakeBuffer()
return nil
}
func (hs *serverHandshakeState) establishKeys() error {
c := hs.c
clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV :=
keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen)
var clientCipher, serverCipher interface{}
var clientHash, serverHash macFunction
if hs.suite.aead == nil {
clientCipher = hs.suite.cipher(clientKey, clientIV, true /* for reading */)
clientHash = hs.suite.mac(c.vers, clientMAC)
serverCipher = hs.suite.cipher(serverKey, serverIV, false /* not for reading */)
serverHash = hs.suite.mac(c.vers, serverMAC)
} else {
clientCipher = hs.suite.aead(clientKey, clientIV)
serverCipher = hs.suite.aead(serverKey, serverIV)
}
c.in.prepareCipherSpec(c.vers, clientCipher, clientHash)
c.out.prepareCipherSpec(c.vers, serverCipher, serverHash)
return nil
}
func (hs *serverHandshakeState) readFinished(out []byte, isResume bool) error {
c := hs.c
c.readRecord(recordTypeChangeCipherSpec)
if err := c.in.error(); err != nil {
return err
}
if hs.hello.nextProtoNeg {
msg, err := c.readHandshake()
if err != nil {
return err
}
nextProto, ok := msg.(*nextProtoMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(nextProto, msg)
}
hs.writeClientHash(nextProto.marshal())
c.clientProtocol = nextProto.proto
}
if hs.hello.channelIDRequested {
msg, err := c.readHandshake()
if err != nil {
return err
}
encryptedExtensions, ok := msg.(*encryptedExtensionsMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(encryptedExtensions, msg)
}
x := new(big.Int).SetBytes(encryptedExtensions.channelID[0:32])
y := new(big.Int).SetBytes(encryptedExtensions.channelID[32:64])
r := new(big.Int).SetBytes(encryptedExtensions.channelID[64:96])
s := new(big.Int).SetBytes(encryptedExtensions.channelID[96:128])
if !elliptic.P256().IsOnCurve(x, y) {
return errors.New("tls: invalid channel ID public key")
}
channelID := &ecdsa.PublicKey{elliptic.P256(), x, y}
var resumeHash []byte
if isResume {
resumeHash = hs.sessionState.handshakeHash
}
if !ecdsa.Verify(channelID, hs.finishedHash.hashForChannelID(resumeHash), r, s) {
return errors.New("tls: invalid channel ID signature")
}
c.channelID = channelID
hs.writeClientHash(encryptedExtensions.marshal())
}
msg, err := c.readHandshake()
if err != nil {
return err
}
clientFinished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(clientFinished, msg)
}
verify := hs.finishedHash.clientSum(hs.masterSecret)
if len(verify) != len(clientFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: client's Finished message is incorrect")
}
c.clientVerify = append(c.clientVerify[:0], clientFinished.verifyData...)
copy(out, clientFinished.verifyData)
hs.writeClientHash(clientFinished.marshal())
return nil
}
func (hs *serverHandshakeState) sendSessionTicket() error {
c := hs.c
state := sessionState{
vers: c.vers,
cipherSuite: hs.suite.id,
masterSecret: hs.masterSecret,
certificates: hs.certsFromClient,
handshakeHash: hs.finishedHash.server.Sum(nil),
}
if !hs.hello.ticketSupported || hs.c.config.Bugs.SkipNewSessionTicket {
if c.config.ServerSessionCache != nil && len(hs.hello.sessionId) != 0 {
c.config.ServerSessionCache.Put(string(hs.hello.sessionId), &state)
}
return nil
}
m := new(newSessionTicketMsg)
var err error
m.ticket, err = c.encryptTicket(&state)
if err != nil {
return err
}
hs.writeServerHash(m.marshal())
c.writeRecord(recordTypeHandshake, m.marshal())
return nil
}
func (hs *serverHandshakeState) sendFinished(out []byte) error {
c := hs.c
finished := new(finishedMsg)
finished.verifyData = hs.finishedHash.serverSum(hs.masterSecret)
copy(out, finished.verifyData)
if c.config.Bugs.BadFinished {
finished.verifyData[0]++
}
c.serverVerify = append(c.serverVerify[:0], finished.verifyData...)
hs.finishedBytes = finished.marshal()
hs.writeServerHash(hs.finishedBytes)
postCCSBytes := hs.finishedBytes
if c.config.Bugs.FragmentAcrossChangeCipherSpec {
c.writeRecord(recordTypeHandshake, postCCSBytes[:5])
postCCSBytes = postCCSBytes[5:]
}
c.dtlsFlushHandshake()
if !c.config.Bugs.SkipChangeCipherSpec {
c.writeRecord(recordTypeChangeCipherSpec, []byte{1})
}
if c.config.Bugs.AppDataAfterChangeCipherSpec != nil {
c.writeRecord(recordTypeApplicationData, c.config.Bugs.AppDataAfterChangeCipherSpec)
}
if c.config.Bugs.AlertAfterChangeCipherSpec != 0 {
c.sendAlert(c.config.Bugs.AlertAfterChangeCipherSpec)
return errors.New("tls: simulating post-CCS alert")
}
if !c.config.Bugs.SkipFinished {
c.writeRecord(recordTypeHandshake, postCCSBytes)
c.dtlsFlushHandshake()
}
c.cipherSuite = hs.suite
return nil
}
// processCertsFromClient takes a chain of client certificates either from a
// Certificates message or from a sessionState and verifies them. It returns
// the public key of the leaf certificate.
func (hs *serverHandshakeState) processCertsFromClient(certificates [][]byte) (crypto.PublicKey, error) {
c := hs.c
hs.certsFromClient = certificates
certs := make([]*x509.Certificate, len(certificates))
var err error
for i, asn1Data := range certificates {
if certs[i], err = x509.ParseCertificate(asn1Data); err != nil {
c.sendAlert(alertBadCertificate)
return nil, errors.New("tls: failed to parse client certificate: " + err.Error())
}
}
if c.config.ClientAuth >= VerifyClientCertIfGiven && len(certs) > 0 {
opts := x509.VerifyOptions{
Roots: c.config.ClientCAs,
CurrentTime: c.config.time(),
Intermediates: x509.NewCertPool(),
KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth},
}
for _, cert := range certs[1:] {
opts.Intermediates.AddCert(cert)
}
chains, err := certs[0].Verify(opts)
if err != nil {
c.sendAlert(alertBadCertificate)
return nil, errors.New("tls: failed to verify client's certificate: " + err.Error())
}
ok := false
for _, ku := range certs[0].ExtKeyUsage {
if ku == x509.ExtKeyUsageClientAuth {
ok = true
break
}
}
if !ok {
c.sendAlert(alertHandshakeFailure)
return nil, errors.New("tls: client's certificate's extended key usage doesn't permit it to be used for client authentication")
}
c.verifiedChains = chains
}
if len(certs) > 0 {
var pub crypto.PublicKey
switch key := certs[0].PublicKey.(type) {
case *ecdsa.PublicKey, *rsa.PublicKey:
pub = key
default:
c.sendAlert(alertUnsupportedCertificate)
return nil, fmt.Errorf("tls: client's certificate contains an unsupported public key of type %T", certs[0].PublicKey)
}
c.peerCertificates = certs
return pub, nil
}
return nil, nil
}
func (hs *serverHandshakeState) writeServerHash(msg []byte) {
// writeServerHash is called before writeRecord.
hs.writeHash(msg, hs.c.sendHandshakeSeq)
}
func (hs *serverHandshakeState) writeClientHash(msg []byte) {
// writeClientHash is called after readHandshake.
hs.writeHash(msg, hs.c.recvHandshakeSeq-1)
}
func (hs *serverHandshakeState) writeHash(msg []byte, seqno uint16) {
if hs.c.isDTLS {
// This is somewhat hacky. DTLS hashes a slightly different format.
// First, the TLS header.
hs.finishedHash.Write(msg[:4])
// Then the sequence number and reassembled fragment offset (always 0).
hs.finishedHash.Write([]byte{byte(seqno >> 8), byte(seqno), 0, 0, 0})
// Then the reassembled fragment (always equal to the message length).
hs.finishedHash.Write(msg[1:4])
// And then the message body.
hs.finishedHash.Write(msg[4:])
} else {
hs.finishedHash.Write(msg)
}
}
// tryCipherSuite returns a cipherSuite with the given id if that cipher suite
// is acceptable to use.
func (c *Conn) tryCipherSuite(id uint16, supportedCipherSuites []uint16, version uint16, ellipticOk, ecdsaOk bool) *cipherSuite {
for _, supported := range supportedCipherSuites {
if id == supported {
var candidate *cipherSuite
for _, s := range cipherSuites {
if s.id == id {
candidate = s
break
}
}
if candidate == nil {
continue
}
// Don't select a ciphersuite which we can't
// support for this client.
if (candidate.flags&suiteECDHE != 0) && !ellipticOk {
continue
}
if (candidate.flags&suiteECDSA != 0) != ecdsaOk {
continue
}
if !c.config.Bugs.SkipCipherVersionCheck && version < VersionTLS12 && candidate.flags&suiteTLS12 != 0 {
continue
}
if c.isDTLS && candidate.flags&suiteNoDTLS != 0 {
continue
}
return candidate
}
}
return nil
}