You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

242 line
9.3 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #ifndef OPENSSL_HEADER_SHA_H
  57. #define OPENSSL_HEADER_SHA_H
  58. #include <openssl/base.h>
  59. #if defined(__cplusplus)
  60. extern "C" {
  61. #endif
  62. /* The SHA family of hash functions (SHA-1 and SHA-2). */
  63. /* SHA_CBLOCK is the block size of SHA-1. */
  64. #define SHA_CBLOCK 64
  65. /* SHA_DIGEST_LENGTH is the length of a SHA-1 digest. */
  66. #define SHA_DIGEST_LENGTH 20
  67. /* TODO(fork): remove */
  68. #define SHA_LBLOCK 16
  69. #define SHA_LONG uint32_t
  70. /* SHA1_Init initialises |sha| and returns one. */
  71. OPENSSL_EXPORT int SHA1_Init(SHA_CTX *sha);
  72. /* SHA1_Update adds |len| bytes from |data| to |sha| and returns one. */
  73. OPENSSL_EXPORT int SHA1_Update(SHA_CTX *sha, const void *data, size_t len);
  74. /* SHA1_Final adds the final padding to |sha| and writes the resulting digest
  75. * to |md|, which must have at least |SHA_DIGEST_LENGTH| bytes of space. It
  76. * returns one. */
  77. OPENSSL_EXPORT int SHA1_Final(uint8_t *md, SHA_CTX *sha);
  78. /* SHA1 writes the digest of |len| bytes from |data| to |out| and returns
  79. * |out|. There must be at least |SHA_DIGEST_LENGTH| bytes of space in
  80. * |out|. */
  81. OPENSSL_EXPORT uint8_t *SHA1(const uint8_t *data, size_t len, uint8_t *out);
  82. /* SHA1_Transform is a low-level function that performs a single, SHA-1 block
  83. * transformation using the state from |sha| and 64 bytes from |block|. */
  84. OPENSSL_EXPORT void SHA1_Transform(SHA_CTX *sha, const uint8_t *block);
  85. struct sha_state_st {
  86. uint32_t h0, h1, h2, h3, h4;
  87. uint32_t Nl, Nh;
  88. uint32_t data[16];
  89. unsigned int num;
  90. };
  91. /* SHA-224. */
  92. /* SHA224_CBLOCK is the block size of SHA-224. */
  93. #define SHA224_CBLOCK 64
  94. /* SHA224_DIGEST_LENGTH is the length of a SHA-224 digest. */
  95. #define SHA224_DIGEST_LENGTH 28
  96. /* SHA224_Init initialises |sha| and returns 1. */
  97. OPENSSL_EXPORT int SHA224_Init(SHA256_CTX *sha);
  98. /* SHA224_Update adds |len| bytes from |data| to |sha| and returns 1. */
  99. OPENSSL_EXPORT int SHA224_Update(SHA256_CTX *sha, const void *data, size_t len);
  100. /* SHA224_Final adds the final padding to |sha| and writes the resulting digest
  101. * to |md|, which must have at least |SHA224_DIGEST_LENGTH| bytes of space. It
  102. * returns one on success and zero on programmer error. */
  103. OPENSSL_EXPORT int SHA224_Final(uint8_t *md, SHA256_CTX *sha);
  104. /* SHA224 writes the digest of |len| bytes from |data| to |out| and returns
  105. * |out|. There must be at least |SHA224_DIGEST_LENGTH| bytes of space in
  106. * |out|. */
  107. OPENSSL_EXPORT uint8_t *SHA224(const uint8_t *data, size_t len, uint8_t *out);
  108. /* SHA-256. */
  109. /* SHA256_CBLOCK is the block size of SHA-256. */
  110. #define SHA256_CBLOCK 64
  111. /* SHA256_DIGEST_LENGTH is the length of a SHA-256 digest. */
  112. #define SHA256_DIGEST_LENGTH 32
  113. /* SHA256_Init initialises |sha| and returns 1. */
  114. OPENSSL_EXPORT int SHA256_Init(SHA256_CTX *sha);
  115. /* SHA256_Update adds |len| bytes from |data| to |sha| and returns 1. */
  116. OPENSSL_EXPORT int SHA256_Update(SHA256_CTX *sha, const void *data, size_t len);
  117. /* SHA256_Final adds the final padding to |sha| and writes the resulting digest
  118. * to |md|, which must have at least |SHA256_DIGEST_LENGTH| bytes of space. It
  119. * returns one on success and zero on programmer error. */
  120. OPENSSL_EXPORT int SHA256_Final(uint8_t *md, SHA256_CTX *sha);
  121. /* SHA256 writes the digest of |len| bytes from |data| to |out| and returns
  122. * |out|. There must be at least |SHA256_DIGEST_LENGTH| bytes of space in
  123. * |out|. */
  124. OPENSSL_EXPORT uint8_t *SHA256(const uint8_t *data, size_t len, uint8_t *out);
  125. /* SHA256_Transform is a low-level function that performs a single, SHA-1 block
  126. * transformation using the state from |sha| and 64 bytes from |block|. */
  127. OPENSSL_EXPORT void SHA256_Transform(SHA256_CTX *sha, const uint8_t *data);
  128. struct sha256_state_st {
  129. uint32_t h[8];
  130. uint32_t Nl, Nh;
  131. uint32_t data[16];
  132. unsigned int num, md_len;
  133. };
  134. /* SHA-384. */
  135. /* SHA384_CBLOCK is the block size of SHA-384. */
  136. #define SHA384_CBLOCK 128
  137. /* SHA384_DIGEST_LENGTH is the length of a SHA-384 digest. */
  138. #define SHA384_DIGEST_LENGTH 48
  139. /* SHA384_Init initialises |sha| and returns 1. */
  140. OPENSSL_EXPORT int SHA384_Init(SHA512_CTX *sha);
  141. /* SHA384_Update adds |len| bytes from |data| to |sha| and returns 1. */
  142. OPENSSL_EXPORT int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len);
  143. /* SHA384_Final adds the final padding to |sha| and writes the resulting digest
  144. * to |md|, which must have at least |SHA384_DIGEST_LENGTH| bytes of space. It
  145. * returns one on success and zero on programmer error. */
  146. OPENSSL_EXPORT int SHA384_Final(uint8_t *md, SHA512_CTX *sha);
  147. /* SHA384 writes the digest of |len| bytes from |data| to |out| and returns
  148. * |out|. There must be at least |SHA384_DIGEST_LENGTH| bytes of space in
  149. * |out|. */
  150. OPENSSL_EXPORT uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out);
  151. /* SHA384_Transform is a low-level function that performs a single, SHA-1 block
  152. * transformation using the state from |sha| and 64 bytes from |block|. */
  153. OPENSSL_EXPORT void SHA384_Transform(SHA512_CTX *sha, const uint8_t *data);
  154. /* SHA-512. */
  155. /* SHA512_CBLOCK is the block size of SHA-512. */
  156. #define SHA512_CBLOCK 128
  157. /* SHA512_DIGEST_LENGTH is the length of a SHA-512 digest. */
  158. #define SHA512_DIGEST_LENGTH 64
  159. /* SHA512_Init initialises |sha| and returns 1. */
  160. OPENSSL_EXPORT int SHA512_Init(SHA512_CTX *sha);
  161. /* SHA512_Update adds |len| bytes from |data| to |sha| and returns 1. */
  162. OPENSSL_EXPORT int SHA512_Update(SHA512_CTX *sha, const void *data, size_t len);
  163. /* SHA512_Final adds the final padding to |sha| and writes the resulting digest
  164. * to |md|, which must have at least |SHA512_DIGEST_LENGTH| bytes of space. It
  165. * returns one on success and zero on programmer error. */
  166. OPENSSL_EXPORT int SHA512_Final(uint8_t *md, SHA512_CTX *sha);
  167. /* SHA512 writes the digest of |len| bytes from |data| to |out| and returns
  168. * |out|. There must be at least |SHA512_DIGEST_LENGTH| bytes of space in
  169. * |out|. */
  170. OPENSSL_EXPORT uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out);
  171. /* SHA512_Transform is a low-level function that performs a single, SHA-1 block
  172. * transformation using the state from |sha| and 64 bytes from |block|. */
  173. OPENSSL_EXPORT void SHA512_Transform(SHA512_CTX *sha, const uint8_t *data);
  174. struct sha512_state_st {
  175. uint64_t h[8];
  176. uint64_t Nl, Nh;
  177. union {
  178. uint64_t d[16];
  179. uint8_t p[128];
  180. } u;
  181. unsigned int num, md_len;
  182. };
  183. #if defined(__cplusplus)
  184. } /* extern C */
  185. #endif
  186. #endif /* OPENSSL_HEADER_SHA_H */