boringssl/ssl/ssl_aead_ctx.c
David Benjamin 13414b3a04 Implement draft-ietf-tls-chacha20-poly1305-04.
Only ECDHE-based ciphers are implemented. To ease the transition, the
pre-standard cipher shares a name with the standard one. The cipher rule parser
is hacked up to match the name to both ciphers. From the perspective of the
cipher suite configuration language, there is only one cipher.

This does mean it is impossible to disable the old variant without a code
change, but this situation will be very short-lived, so this is fine.

Also take this opportunity to make the CK and TXT names align with convention.

Change-Id: Ie819819c55bce8ff58e533f1dbc8bef5af955c21
Reviewed-on: https://boringssl-review.googlesource.com/6686
Reviewed-by: Adam Langley <agl@google.com>
2015-12-16 23:34:56 +00:00

301 lines
9.8 KiB
C

/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/type_check.h>
#include "internal.h"
OPENSSL_COMPILE_ASSERT(EVP_AEAD_MAX_NONCE_LENGTH < 256,
variable_nonce_len_doesnt_fit_in_uint8_t);
SSL_AEAD_CTX *SSL_AEAD_CTX_new(enum evp_aead_direction_t direction,
uint16_t version, const SSL_CIPHER *cipher,
const uint8_t *enc_key, size_t enc_key_len,
const uint8_t *mac_key, size_t mac_key_len,
const uint8_t *fixed_iv, size_t fixed_iv_len) {
const EVP_AEAD *aead;
size_t discard;
if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, cipher, version)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH];
if (mac_key_len > 0) {
/* This is a "stateful" AEAD (for compatibility with pre-AEAD cipher
* suites). */
if (mac_key_len + enc_key_len + fixed_iv_len > sizeof(merged_key)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
memcpy(merged_key, mac_key, mac_key_len);
memcpy(merged_key + mac_key_len, enc_key, enc_key_len);
memcpy(merged_key + mac_key_len + enc_key_len, fixed_iv, fixed_iv_len);
enc_key = merged_key;
enc_key_len += mac_key_len;
enc_key_len += fixed_iv_len;
}
SSL_AEAD_CTX *aead_ctx = (SSL_AEAD_CTX *)OPENSSL_malloc(sizeof(SSL_AEAD_CTX));
if (aead_ctx == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return NULL;
}
memset(aead_ctx, 0, sizeof(SSL_AEAD_CTX));
aead_ctx->cipher = cipher;
if (!EVP_AEAD_CTX_init_with_direction(
&aead_ctx->ctx, aead, enc_key, enc_key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH, direction)) {
OPENSSL_free(aead_ctx);
return NULL;
}
assert(EVP_AEAD_nonce_length(aead) <= EVP_AEAD_MAX_NONCE_LENGTH);
aead_ctx->variable_nonce_len = (uint8_t)EVP_AEAD_nonce_length(aead);
if (mac_key_len == 0) {
assert(fixed_iv_len <= sizeof(aead_ctx->fixed_nonce));
memcpy(aead_ctx->fixed_nonce, fixed_iv, fixed_iv_len);
aead_ctx->fixed_nonce_len = fixed_iv_len;
if (cipher->algorithm_enc & SSL_CHACHA20POLY1305) {
/* The fixed nonce into the actual nonce (the sequence number). */
aead_ctx->xor_fixed_nonce = 1;
aead_ctx->variable_nonce_len = 8;
} else {
/* The fixed IV is prepended to the nonce. */
assert(fixed_iv_len <= aead_ctx->variable_nonce_len);
aead_ctx->variable_nonce_len -= fixed_iv_len;
}
/* AES-GCM uses an explicit nonce. */
if (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) {
aead_ctx->variable_nonce_included_in_record = 1;
}
} else {
aead_ctx->variable_nonce_included_in_record = 1;
aead_ctx->random_variable_nonce = 1;
aead_ctx->omit_length_in_ad = 1;
aead_ctx->omit_version_in_ad = (version == SSL3_VERSION);
}
return aead_ctx;
}
void SSL_AEAD_CTX_free(SSL_AEAD_CTX *aead) {
if (aead == NULL) {
return;
}
EVP_AEAD_CTX_cleanup(&aead->ctx);
OPENSSL_free(aead);
}
size_t SSL_AEAD_CTX_explicit_nonce_len(SSL_AEAD_CTX *aead) {
if (aead != NULL && aead->variable_nonce_included_in_record) {
return aead->variable_nonce_len;
}
return 0;
}
size_t SSL_AEAD_CTX_max_overhead(SSL_AEAD_CTX *aead) {
if (aead == NULL) {
return 0;
}
return EVP_AEAD_max_overhead(aead->ctx.aead) +
SSL_AEAD_CTX_explicit_nonce_len(aead);
}
/* ssl_aead_ctx_get_ad writes the additional data for |aead| into |out| and
* returns the number of bytes written. */
static size_t ssl_aead_ctx_get_ad(SSL_AEAD_CTX *aead, uint8_t out[13],
uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8],
size_t plaintext_len) {
memcpy(out, seqnum, 8);
size_t len = 8;
out[len++] = type;
if (!aead->omit_version_in_ad) {
out[len++] = (uint8_t)(wire_version >> 8);
out[len++] = (uint8_t)wire_version;
}
if (!aead->omit_length_in_ad) {
out[len++] = (uint8_t)(plaintext_len >> 8);
out[len++] = (uint8_t)plaintext_len;
}
return len;
}
int SSL_AEAD_CTX_open(SSL_AEAD_CTX *aead, uint8_t *out, size_t *out_len,
size_t max_out, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len) {
if (aead == NULL) {
/* Handle the initial NULL cipher. */
if (in_len > max_out) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return 0;
}
memmove(out, in, in_len);
*out_len = in_len;
return 1;
}
/* TLS 1.2 AEADs include the length in the AD and are assumed to have fixed
* overhead. Otherwise the parameter is unused. */
size_t plaintext_len = 0;
if (!aead->omit_length_in_ad) {
size_t overhead = SSL_AEAD_CTX_max_overhead(aead);
if (in_len < overhead) {
/* Publicly invalid. */
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
return 0;
}
plaintext_len = in_len - overhead;
}
uint8_t ad[13];
size_t ad_len = ssl_aead_ctx_get_ad(aead, ad, type, wire_version, seqnum,
plaintext_len);
/* Assemble the nonce. */
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
size_t nonce_len = 0;
/* Prepend the fixed nonce, or left-pad with zeros if XORing. */
if (aead->xor_fixed_nonce) {
nonce_len = aead->fixed_nonce_len - aead->variable_nonce_len;
memset(nonce, 0, nonce_len);
} else {
memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
nonce_len += aead->fixed_nonce_len;
}
/* Add the variable nonce. */
if (aead->variable_nonce_included_in_record) {
if (in_len < aead->variable_nonce_len) {
/* Publicly invalid. */
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
return 0;
}
memcpy(nonce + nonce_len, in, aead->variable_nonce_len);
in += aead->variable_nonce_len;
in_len -= aead->variable_nonce_len;
} else {
assert(aead->variable_nonce_len == 8);
memcpy(nonce + nonce_len, seqnum, aead->variable_nonce_len);
}
nonce_len += aead->variable_nonce_len;
/* XOR the fixed nonce, if necessary. */
if (aead->xor_fixed_nonce) {
assert(nonce_len == aead->fixed_nonce_len);
size_t i;
for (i = 0; i < aead->fixed_nonce_len; i++) {
nonce[i] ^= aead->fixed_nonce[i];
}
}
return EVP_AEAD_CTX_open(&aead->ctx, out, out_len, max_out, nonce, nonce_len,
in, in_len, ad, ad_len);
}
int SSL_AEAD_CTX_seal(SSL_AEAD_CTX *aead, uint8_t *out, size_t *out_len,
size_t max_out, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len) {
if (aead == NULL) {
/* Handle the initial NULL cipher. */
if (in_len > max_out) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return 0;
}
memmove(out, in, in_len);
*out_len = in_len;
return 1;
}
uint8_t ad[13];
size_t ad_len = ssl_aead_ctx_get_ad(aead, ad, type, wire_version, seqnum,
in_len);
/* Assemble the nonce. */
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
size_t nonce_len = 0;
/* Prepend the fixed nonce, or left-pad with zeros if XORing. */
if (aead->xor_fixed_nonce) {
nonce_len = aead->fixed_nonce_len - aead->variable_nonce_len;
memset(nonce, 0, nonce_len);
} else {
memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
nonce_len += aead->fixed_nonce_len;
}
/* Select the variable nonce. */
if (aead->random_variable_nonce) {
assert(aead->variable_nonce_included_in_record);
if (!RAND_bytes(nonce + nonce_len, aead->variable_nonce_len)) {
return 0;
}
} else {
/* When sending we use the sequence number as the variable part of the
* nonce. */
assert(aead->variable_nonce_len == 8);
memcpy(nonce + nonce_len, seqnum, aead->variable_nonce_len);
}
nonce_len += aead->variable_nonce_len;
/* Emit the variable nonce if included in the record. */
size_t extra_len = 0;
if (aead->variable_nonce_included_in_record) {
assert(!aead->xor_fixed_nonce);
if (max_out < aead->variable_nonce_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return 0;
}
if (out < in + in_len && in < out + aead->variable_nonce_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return 0;
}
memcpy(out, nonce + aead->fixed_nonce_len, aead->variable_nonce_len);
extra_len = aead->variable_nonce_len;
out += aead->variable_nonce_len;
max_out -= aead->variable_nonce_len;
}
/* XOR the fixed nonce, if necessary. */
if (aead->xor_fixed_nonce) {
assert(nonce_len == aead->fixed_nonce_len);
size_t i;
for (i = 0; i < aead->fixed_nonce_len; i++) {
nonce[i] ^= aead->fixed_nonce[i];
}
}
if (!EVP_AEAD_CTX_seal(&aead->ctx, out, out_len, max_out, nonce, nonce_len,
in, in_len, ad, ad_len)) {
return 0;
}
*out_len += extra_len;
return 1;
}