You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

475 lines
14 KiB

  1. /* crypto/x509/x509_cmp.c */
  2. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  3. * All rights reserved.
  4. *
  5. * This package is an SSL implementation written
  6. * by Eric Young (eay@cryptsoft.com).
  7. * The implementation was written so as to conform with Netscapes SSL.
  8. *
  9. * This library is free for commercial and non-commercial use as long as
  10. * the following conditions are aheared to. The following conditions
  11. * apply to all code found in this distribution, be it the RC4, RSA,
  12. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  13. * included with this distribution is covered by the same copyright terms
  14. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  15. *
  16. * Copyright remains Eric Young's, and as such any Copyright notices in
  17. * the code are not to be removed.
  18. * If this package is used in a product, Eric Young should be given attribution
  19. * as the author of the parts of the library used.
  20. * This can be in the form of a textual message at program startup or
  21. * in documentation (online or textual) provided with the package.
  22. *
  23. * Redistribution and use in source and binary forms, with or without
  24. * modification, are permitted provided that the following conditions
  25. * are met:
  26. * 1. Redistributions of source code must retain the copyright
  27. * notice, this list of conditions and the following disclaimer.
  28. * 2. Redistributions in binary form must reproduce the above copyright
  29. * notice, this list of conditions and the following disclaimer in the
  30. * documentation and/or other materials provided with the distribution.
  31. * 3. All advertising materials mentioning features or use of this software
  32. * must display the following acknowledgement:
  33. * "This product includes cryptographic software written by
  34. * Eric Young (eay@cryptsoft.com)"
  35. * The word 'cryptographic' can be left out if the rouines from the library
  36. * being used are not cryptographic related :-).
  37. * 4. If you include any Windows specific code (or a derivative thereof) from
  38. * the apps directory (application code) you must include an acknowledgement:
  39. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  40. *
  41. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  42. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  43. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  44. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  45. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  46. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  47. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  49. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  50. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  51. * SUCH DAMAGE.
  52. *
  53. * The licence and distribution terms for any publically available version or
  54. * derivative of this code cannot be changed. i.e. this code cannot simply be
  55. * copied and put under another distribution licence
  56. * [including the GNU Public Licence.] */
  57. #include <string.h>
  58. #include <openssl/asn1.h>
  59. #include <openssl/buf.h>
  60. #include <openssl/digest.h>
  61. #include <openssl/err.h>
  62. #include <openssl/mem.h>
  63. #include <openssl/obj.h>
  64. #include <openssl/stack.h>
  65. #include <openssl/x509.h>
  66. #include <openssl/x509v3.h>
  67. int X509_issuer_and_serial_cmp(const X509 *a, const X509 *b)
  68. {
  69. int i;
  70. X509_CINF *ai, *bi;
  71. ai = a->cert_info;
  72. bi = b->cert_info;
  73. i = M_ASN1_INTEGER_cmp(ai->serialNumber, bi->serialNumber);
  74. if (i)
  75. return (i);
  76. return (X509_NAME_cmp(ai->issuer, bi->issuer));
  77. }
  78. unsigned long X509_issuer_and_serial_hash(X509 *a)
  79. {
  80. unsigned long ret = 0;
  81. EVP_MD_CTX ctx;
  82. unsigned char md[16];
  83. char *f;
  84. EVP_MD_CTX_init(&ctx);
  85. f = X509_NAME_oneline(a->cert_info->issuer, NULL, 0);
  86. if (!EVP_DigestInit_ex(&ctx, EVP_md5(), NULL))
  87. goto err;
  88. if (!EVP_DigestUpdate(&ctx, (unsigned char *)f, strlen(f)))
  89. goto err;
  90. OPENSSL_free(f);
  91. if (!EVP_DigestUpdate
  92. (&ctx, (unsigned char *)a->cert_info->serialNumber->data,
  93. (unsigned long)a->cert_info->serialNumber->length))
  94. goto err;
  95. if (!EVP_DigestFinal_ex(&ctx, &(md[0]), NULL))
  96. goto err;
  97. ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) |
  98. ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L)
  99. ) & 0xffffffffL;
  100. err:
  101. EVP_MD_CTX_cleanup(&ctx);
  102. return (ret);
  103. }
  104. int X509_issuer_name_cmp(const X509 *a, const X509 *b)
  105. {
  106. return (X509_NAME_cmp(a->cert_info->issuer, b->cert_info->issuer));
  107. }
  108. int X509_subject_name_cmp(const X509 *a, const X509 *b)
  109. {
  110. return (X509_NAME_cmp(a->cert_info->subject, b->cert_info->subject));
  111. }
  112. int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b)
  113. {
  114. return (X509_NAME_cmp(a->crl->issuer, b->crl->issuer));
  115. }
  116. int X509_CRL_match(const X509_CRL *a, const X509_CRL *b)
  117. {
  118. return memcmp(a->sha1_hash, b->sha1_hash, 20);
  119. }
  120. X509_NAME *X509_get_issuer_name(X509 *a)
  121. {
  122. return (a->cert_info->issuer);
  123. }
  124. unsigned long X509_issuer_name_hash(X509 *x)
  125. {
  126. return (X509_NAME_hash(x->cert_info->issuer));
  127. }
  128. unsigned long X509_issuer_name_hash_old(X509 *x)
  129. {
  130. return (X509_NAME_hash_old(x->cert_info->issuer));
  131. }
  132. X509_NAME *X509_get_subject_name(X509 *a)
  133. {
  134. return (a->cert_info->subject);
  135. }
  136. ASN1_INTEGER *X509_get_serialNumber(X509 *a)
  137. {
  138. return (a->cert_info->serialNumber);
  139. }
  140. unsigned long X509_subject_name_hash(X509 *x)
  141. {
  142. return (X509_NAME_hash(x->cert_info->subject));
  143. }
  144. unsigned long X509_subject_name_hash_old(X509 *x)
  145. {
  146. return (X509_NAME_hash_old(x->cert_info->subject));
  147. }
  148. /*
  149. * Compare two certificates: they must be identical for this to work. NB:
  150. * Although "cmp" operations are generally prototyped to take "const"
  151. * arguments (eg. for use in STACKs), the way X509 handling is - these
  152. * operations may involve ensuring the hashes are up-to-date and ensuring
  153. * certain cert information is cached. So this is the point where the
  154. * "depth-first" constification tree has to halt with an evil cast.
  155. */
  156. int X509_cmp(const X509 *a, const X509 *b)
  157. {
  158. int rv;
  159. /* ensure hash is valid */
  160. X509_check_purpose((X509 *)a, -1, 0);
  161. X509_check_purpose((X509 *)b, -1, 0);
  162. rv = memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH);
  163. if (rv)
  164. return rv;
  165. /* Check for match against stored encoding too */
  166. if (!a->cert_info->enc.modified && !b->cert_info->enc.modified) {
  167. rv = (int)(a->cert_info->enc.len - b->cert_info->enc.len);
  168. if (rv)
  169. return rv;
  170. return memcmp(a->cert_info->enc.enc, b->cert_info->enc.enc,
  171. a->cert_info->enc.len);
  172. }
  173. return rv;
  174. }
  175. int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b)
  176. {
  177. int ret;
  178. /* Ensure canonical encoding is present and up to date */
  179. if (!a->canon_enc || a->modified) {
  180. ret = i2d_X509_NAME((X509_NAME *)a, NULL);
  181. if (ret < 0)
  182. return -2;
  183. }
  184. if (!b->canon_enc || b->modified) {
  185. ret = i2d_X509_NAME((X509_NAME *)b, NULL);
  186. if (ret < 0)
  187. return -2;
  188. }
  189. ret = a->canon_enclen - b->canon_enclen;
  190. if (ret)
  191. return ret;
  192. return memcmp(a->canon_enc, b->canon_enc, a->canon_enclen);
  193. }
  194. unsigned long X509_NAME_hash(X509_NAME *x)
  195. {
  196. unsigned long ret = 0;
  197. unsigned char md[SHA_DIGEST_LENGTH];
  198. /* Make sure X509_NAME structure contains valid cached encoding */
  199. i2d_X509_NAME(x, NULL);
  200. if (!EVP_Digest(x->canon_enc, x->canon_enclen, md, NULL, EVP_sha1(),
  201. NULL))
  202. return 0;
  203. ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) |
  204. ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L)
  205. ) & 0xffffffffL;
  206. return (ret);
  207. }
  208. /*
  209. * I now DER encode the name and hash it. Since I cache the DER encoding,
  210. * this is reasonably efficient.
  211. */
  212. unsigned long X509_NAME_hash_old(X509_NAME *x)
  213. {
  214. EVP_MD_CTX md_ctx;
  215. unsigned long ret = 0;
  216. unsigned char md[16];
  217. /* Make sure X509_NAME structure contains valid cached encoding */
  218. i2d_X509_NAME(x, NULL);
  219. EVP_MD_CTX_init(&md_ctx);
  220. /* EVP_MD_CTX_set_flags(&md_ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); */
  221. if (EVP_DigestInit_ex(&md_ctx, EVP_md5(), NULL)
  222. && EVP_DigestUpdate(&md_ctx, x->bytes->data, x->bytes->length)
  223. && EVP_DigestFinal_ex(&md_ctx, md, NULL))
  224. ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) |
  225. ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L)
  226. ) & 0xffffffffL;
  227. EVP_MD_CTX_cleanup(&md_ctx);
  228. return (ret);
  229. }
  230. /* Search a stack of X509 for a match */
  231. X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk, X509_NAME *name,
  232. ASN1_INTEGER *serial)
  233. {
  234. size_t i;
  235. X509_CINF cinf;
  236. X509 x, *x509 = NULL;
  237. if (!sk)
  238. return NULL;
  239. x.cert_info = &cinf;
  240. cinf.serialNumber = serial;
  241. cinf.issuer = name;
  242. for (i = 0; i < sk_X509_num(sk); i++) {
  243. x509 = sk_X509_value(sk, i);
  244. if (X509_issuer_and_serial_cmp(x509, &x) == 0)
  245. return (x509);
  246. }
  247. return (NULL);
  248. }
  249. X509 *X509_find_by_subject(STACK_OF(X509) *sk, X509_NAME *name)
  250. {
  251. X509 *x509;
  252. size_t i;
  253. for (i = 0; i < sk_X509_num(sk); i++) {
  254. x509 = sk_X509_value(sk, i);
  255. if (X509_NAME_cmp(X509_get_subject_name(x509), name) == 0)
  256. return (x509);
  257. }
  258. return (NULL);
  259. }
  260. EVP_PKEY *X509_get_pubkey(X509 *x)
  261. {
  262. if ((x == NULL) || (x->cert_info == NULL))
  263. return (NULL);
  264. return (X509_PUBKEY_get(x->cert_info->key));
  265. }
  266. ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x)
  267. {
  268. if (!x)
  269. return NULL;
  270. return x->cert_info->key->public_key;
  271. }
  272. int X509_check_private_key(X509 *x, EVP_PKEY *k)
  273. {
  274. EVP_PKEY *xk;
  275. int ret;
  276. xk = X509_get_pubkey(x);
  277. if (xk)
  278. ret = EVP_PKEY_cmp(xk, k);
  279. else
  280. ret = -2;
  281. switch (ret) {
  282. case 1:
  283. break;
  284. case 0:
  285. OPENSSL_PUT_ERROR(X509, X509_R_KEY_VALUES_MISMATCH);
  286. break;
  287. case -1:
  288. OPENSSL_PUT_ERROR(X509, X509_R_KEY_TYPE_MISMATCH);
  289. break;
  290. case -2:
  291. OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
  292. }
  293. if (xk)
  294. EVP_PKEY_free(xk);
  295. if (ret > 0)
  296. return 1;
  297. return 0;
  298. }
  299. /*
  300. * Check a suite B algorithm is permitted: pass in a public key and the NID
  301. * of its signature (or 0 if no signature). The pflags is a pointer to a
  302. * flags field which must contain the suite B verification flags.
  303. */
  304. static int check_suite_b(EVP_PKEY *pkey, int sign_nid, unsigned long *pflags)
  305. {
  306. const EC_GROUP *grp = NULL;
  307. int curve_nid;
  308. if (pkey && pkey->type == EVP_PKEY_EC)
  309. grp = EC_KEY_get0_group(pkey->pkey.ec);
  310. if (!grp)
  311. return X509_V_ERR_SUITE_B_INVALID_ALGORITHM;
  312. curve_nid = EC_GROUP_get_curve_name(grp);
  313. /* Check curve is consistent with LOS */
  314. if (curve_nid == NID_secp384r1) { /* P-384 */
  315. /*
  316. * Check signature algorithm is consistent with curve.
  317. */
  318. if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA384)
  319. return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM;
  320. if (!(*pflags & X509_V_FLAG_SUITEB_192_LOS))
  321. return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED;
  322. /* If we encounter P-384 we cannot use P-256 later */
  323. *pflags &= ~X509_V_FLAG_SUITEB_128_LOS_ONLY;
  324. } else if (curve_nid == NID_X9_62_prime256v1) { /* P-256 */
  325. if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA256)
  326. return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM;
  327. if (!(*pflags & X509_V_FLAG_SUITEB_128_LOS_ONLY))
  328. return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED;
  329. } else
  330. return X509_V_ERR_SUITE_B_INVALID_CURVE;
  331. return X509_V_OK;
  332. }
  333. int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain,
  334. unsigned long flags)
  335. {
  336. int rv, sign_nid;
  337. size_t i;
  338. EVP_PKEY *pk = NULL;
  339. unsigned long tflags;
  340. if (!(flags & X509_V_FLAG_SUITEB_128_LOS))
  341. return X509_V_OK;
  342. tflags = flags;
  343. /* If no EE certificate passed in must be first in chain */
  344. if (x == NULL) {
  345. x = sk_X509_value(chain, 0);
  346. i = 1;
  347. } else
  348. i = 0;
  349. if (X509_get_version(x) != 2) {
  350. rv = X509_V_ERR_SUITE_B_INVALID_VERSION;
  351. /* Correct error depth */
  352. i = 0;
  353. goto end;
  354. }
  355. pk = X509_get_pubkey(x);
  356. /* Check EE key only */
  357. rv = check_suite_b(pk, -1, &tflags);
  358. if (rv != X509_V_OK) {
  359. /* Correct error depth */
  360. i = 0;
  361. goto end;
  362. }
  363. for (; i < sk_X509_num(chain); i++) {
  364. sign_nid = X509_get_signature_nid(x);
  365. x = sk_X509_value(chain, i);
  366. if (X509_get_version(x) != 2) {
  367. rv = X509_V_ERR_SUITE_B_INVALID_VERSION;
  368. goto end;
  369. }
  370. EVP_PKEY_free(pk);
  371. pk = X509_get_pubkey(x);
  372. rv = check_suite_b(pk, sign_nid, &tflags);
  373. if (rv != X509_V_OK)
  374. goto end;
  375. }
  376. /* Final check: root CA signature */
  377. rv = check_suite_b(pk, X509_get_signature_nid(x), &tflags);
  378. end:
  379. if (pk)
  380. EVP_PKEY_free(pk);
  381. if (rv != X509_V_OK) {
  382. /* Invalid signature or LOS errors are for previous cert */
  383. if ((rv == X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM
  384. || rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED) && i)
  385. i--;
  386. /*
  387. * If we have LOS error and flags changed then we are signing P-384
  388. * with P-256. Use more meaninggul error.
  389. */
  390. if (rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED && flags != tflags)
  391. rv = X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256;
  392. if (perror_depth)
  393. *perror_depth = i;
  394. }
  395. return rv;
  396. }
  397. int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags)
  398. {
  399. int sign_nid;
  400. if (!(flags & X509_V_FLAG_SUITEB_128_LOS))
  401. return X509_V_OK;
  402. sign_nid = OBJ_obj2nid(crl->crl->sig_alg->algorithm);
  403. return check_suite_b(pk, sign_nid, &flags);
  404. }
  405. /*
  406. * Not strictly speaking an "up_ref" as a STACK doesn't have a reference
  407. * count but it has the same effect by duping the STACK and upping the ref of
  408. * each X509 structure.
  409. */
  410. STACK_OF(X509) *X509_chain_up_ref(STACK_OF(X509) *chain)
  411. {
  412. STACK_OF(X509) *ret;
  413. size_t i;
  414. ret = sk_X509_dup(chain);
  415. for (i = 0; i < sk_X509_num(ret); i++) {
  416. X509_up_ref(sk_X509_value(ret, i));
  417. }
  418. return ret;
  419. }