You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

367 lines
10 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/x509.h>
  57. #include <limits.h>
  58. #include <openssl/asn1.h>
  59. #include <openssl/asn1t.h>
  60. #include <openssl/bytestring.h>
  61. #include <openssl/err.h>
  62. #include <openssl/evp.h>
  63. #include <openssl/mem.h>
  64. #include <openssl/obj.h>
  65. #include <openssl/thread.h>
  66. #include "../internal.h"
  67. /* Minor tweak to operation: free up EVP_PKEY */
  68. static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
  69. void *exarg)
  70. {
  71. if (operation == ASN1_OP_FREE_POST) {
  72. X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
  73. EVP_PKEY_free(pubkey->pkey);
  74. }
  75. return 1;
  76. }
  77. ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = {
  78. ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
  79. ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
  80. } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY)
  81. IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY)
  82. int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey)
  83. {
  84. X509_PUBKEY *pk = NULL;
  85. uint8_t *spki = NULL;
  86. size_t spki_len;
  87. if (x == NULL)
  88. return (0);
  89. CBB cbb;
  90. if (!CBB_init(&cbb, 0) ||
  91. !EVP_marshal_public_key(&cbb, pkey) ||
  92. !CBB_finish(&cbb, &spki, &spki_len) ||
  93. spki_len > LONG_MAX) {
  94. CBB_cleanup(&cbb);
  95. OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_ENCODE_ERROR);
  96. goto error;
  97. }
  98. const uint8_t *p = spki;
  99. pk = d2i_X509_PUBKEY(NULL, &p, (long)spki_len);
  100. if (pk == NULL || p != spki + spki_len) {
  101. OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_DECODE_ERROR);
  102. goto error;
  103. }
  104. OPENSSL_free(spki);
  105. X509_PUBKEY_free(*x);
  106. *x = pk;
  107. return 1;
  108. error:
  109. X509_PUBKEY_free(pk);
  110. OPENSSL_free(spki);
  111. return 0;
  112. }
  113. /* g_pubkey_lock is used to protect the initialisation of the |pkey| member of
  114. * |X509_PUBKEY| objects. Really |X509_PUBKEY| should have a |CRYPTO_once_t|
  115. * inside it for this, but |CRYPTO_once_t| is private and |X509_PUBKEY| is
  116. * not. */
  117. static struct CRYPTO_STATIC_MUTEX g_pubkey_lock = CRYPTO_STATIC_MUTEX_INIT;
  118. EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key)
  119. {
  120. EVP_PKEY *ret = NULL;
  121. uint8_t *spki = NULL;
  122. if (key == NULL)
  123. goto error;
  124. CRYPTO_STATIC_MUTEX_lock_read(&g_pubkey_lock);
  125. if (key->pkey != NULL) {
  126. CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
  127. return EVP_PKEY_up_ref(key->pkey);
  128. }
  129. CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
  130. /* Re-encode the |X509_PUBKEY| to DER and parse it. */
  131. int spki_len = i2d_X509_PUBKEY(key, &spki);
  132. if (spki_len < 0) {
  133. goto error;
  134. }
  135. CBS cbs;
  136. CBS_init(&cbs, spki, (size_t)spki_len);
  137. ret = EVP_parse_public_key(&cbs);
  138. if (ret == NULL || CBS_len(&cbs) != 0) {
  139. OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_DECODE_ERROR);
  140. goto error;
  141. }
  142. /* Check to see if another thread set key->pkey first */
  143. CRYPTO_STATIC_MUTEX_lock_write(&g_pubkey_lock);
  144. if (key->pkey) {
  145. CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
  146. EVP_PKEY_free(ret);
  147. ret = key->pkey;
  148. } else {
  149. key->pkey = ret;
  150. CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
  151. }
  152. OPENSSL_free(spki);
  153. return EVP_PKEY_up_ref(ret);
  154. error:
  155. OPENSSL_free(spki);
  156. EVP_PKEY_free(ret);
  157. return NULL;
  158. }
  159. /*
  160. * Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or
  161. * decode as X509_PUBKEY
  162. */
  163. EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length)
  164. {
  165. X509_PUBKEY *xpk;
  166. EVP_PKEY *pktmp;
  167. xpk = d2i_X509_PUBKEY(NULL, pp, length);
  168. if (!xpk)
  169. return NULL;
  170. pktmp = X509_PUBKEY_get(xpk);
  171. X509_PUBKEY_free(xpk);
  172. if (!pktmp)
  173. return NULL;
  174. if (a) {
  175. EVP_PKEY_free(*a);
  176. *a = pktmp;
  177. }
  178. return pktmp;
  179. }
  180. int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp)
  181. {
  182. X509_PUBKEY *xpk = NULL;
  183. int ret;
  184. if (!a)
  185. return 0;
  186. if (!X509_PUBKEY_set(&xpk, (EVP_PKEY *)a))
  187. return 0;
  188. ret = i2d_X509_PUBKEY(xpk, pp);
  189. X509_PUBKEY_free(xpk);
  190. return ret;
  191. }
  192. /*
  193. * The following are equivalents but which return RSA and DSA keys
  194. */
  195. RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length)
  196. {
  197. EVP_PKEY *pkey;
  198. RSA *key;
  199. const unsigned char *q;
  200. q = *pp;
  201. pkey = d2i_PUBKEY(NULL, &q, length);
  202. if (!pkey)
  203. return NULL;
  204. key = EVP_PKEY_get1_RSA(pkey);
  205. EVP_PKEY_free(pkey);
  206. if (!key)
  207. return NULL;
  208. *pp = q;
  209. if (a) {
  210. RSA_free(*a);
  211. *a = key;
  212. }
  213. return key;
  214. }
  215. int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp)
  216. {
  217. EVP_PKEY *pktmp;
  218. int ret;
  219. if (!a)
  220. return 0;
  221. pktmp = EVP_PKEY_new();
  222. if (!pktmp) {
  223. OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
  224. return 0;
  225. }
  226. EVP_PKEY_set1_RSA(pktmp, (RSA *)a);
  227. ret = i2d_PUBKEY(pktmp, pp);
  228. EVP_PKEY_free(pktmp);
  229. return ret;
  230. }
  231. #ifndef OPENSSL_NO_DSA
  232. DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length)
  233. {
  234. EVP_PKEY *pkey;
  235. DSA *key;
  236. const unsigned char *q;
  237. q = *pp;
  238. pkey = d2i_PUBKEY(NULL, &q, length);
  239. if (!pkey)
  240. return NULL;
  241. key = EVP_PKEY_get1_DSA(pkey);
  242. EVP_PKEY_free(pkey);
  243. if (!key)
  244. return NULL;
  245. *pp = q;
  246. if (a) {
  247. DSA_free(*a);
  248. *a = key;
  249. }
  250. return key;
  251. }
  252. int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp)
  253. {
  254. EVP_PKEY *pktmp;
  255. int ret;
  256. if (!a)
  257. return 0;
  258. pktmp = EVP_PKEY_new();
  259. if (!pktmp) {
  260. OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
  261. return 0;
  262. }
  263. EVP_PKEY_set1_DSA(pktmp, (DSA *)a);
  264. ret = i2d_PUBKEY(pktmp, pp);
  265. EVP_PKEY_free(pktmp);
  266. return ret;
  267. }
  268. #endif
  269. EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length)
  270. {
  271. EVP_PKEY *pkey;
  272. EC_KEY *key;
  273. const unsigned char *q;
  274. q = *pp;
  275. pkey = d2i_PUBKEY(NULL, &q, length);
  276. if (!pkey)
  277. return (NULL);
  278. key = EVP_PKEY_get1_EC_KEY(pkey);
  279. EVP_PKEY_free(pkey);
  280. if (!key)
  281. return (NULL);
  282. *pp = q;
  283. if (a) {
  284. EC_KEY_free(*a);
  285. *a = key;
  286. }
  287. return (key);
  288. }
  289. int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp)
  290. {
  291. EVP_PKEY *pktmp;
  292. int ret;
  293. if (!a)
  294. return (0);
  295. if ((pktmp = EVP_PKEY_new()) == NULL) {
  296. OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
  297. return (0);
  298. }
  299. EVP_PKEY_set1_EC_KEY(pktmp, (EC_KEY *)a);
  300. ret = i2d_PUBKEY(pktmp, pp);
  301. EVP_PKEY_free(pktmp);
  302. return (ret);
  303. }
  304. int X509_PUBKEY_set0_param(X509_PUBKEY *pub, const ASN1_OBJECT *aobj,
  305. int ptype, void *pval,
  306. unsigned char *penc, int penclen)
  307. {
  308. if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval))
  309. return 0;
  310. if (penc) {
  311. if (pub->public_key->data)
  312. OPENSSL_free(pub->public_key->data);
  313. pub->public_key->data = penc;
  314. pub->public_key->length = penclen;
  315. /* Set number of unused bits to zero */
  316. pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
  317. pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  318. }
  319. return 1;
  320. }
  321. int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
  322. const unsigned char **pk, int *ppklen,
  323. X509_ALGOR **pa, X509_PUBKEY *pub)
  324. {
  325. if (ppkalg)
  326. *ppkalg = pub->algor->algorithm;
  327. if (pk) {
  328. *pk = pub->public_key->data;
  329. *ppklen = pub->public_key->length;
  330. }
  331. if (pa)
  332. *pa = pub->algor;
  333. return 1;
  334. }