638a408cd2
This reuses wnaf.c's window scheduling, but has access to the tuned field arithemetic and pre-computed base point table. Unlike wnaf.c, we do not make the points affine as it's not worth it for a single table. (We already precomputed the base point table.) Annoyingly, 32-bit x86 gets slower by a bit, but the other platforms are faster. My guess is that that the generic code gets to use the bn_mul_mont assembly and the compiler, faced with the increased 32-bit register pressure and the extremely register-poor x86, is making bad decisions on the otherwise P-256-tuned C code. The three platforms that see much larger gains are significantly more important than 32-bit x86 at this point, so go with this change. armv7a (Nexus 5X) before/after [+14.4%]: Did 2703 ECDSA P-256 verify operations in 5034539us (536.9 ops/sec) Did 3127 ECDSA P-256 verify operations in 5091379us (614.2 ops/sec) aarch64 (Nexus 5X) before/after [+9.2%]: Did 6783 ECDSA P-256 verify operations in 5031324us (1348.2 ops/sec) Did 7410 ECDSA P-256 verify operations in 5033291us (1472.2 ops/sec) x86 before/after [-2.7%]: Did 8961 ECDSA P-256 verify operations in 10075901us (889.3 ops/sec) Did 8568 ECDSA P-256 verify operations in 10003001us (856.5 ops/sec) x86_64 before/after [+8.6%]: Did 29808 ECDSA P-256 verify operations in 10008662us (2978.2 ops/sec) Did 32528 ECDSA P-256 verify operations in 10057137us (3234.3 ops/sec) Change-Id: I5fa643149f5bfbbda9533e3008baadfee9979b93 Reviewed-on: https://boringssl-review.googlesource.com/25684 Reviewed-by: Adam Langley <agl@google.com> Commit-Queue: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
331 lines
14 KiB
C
331 lines
14 KiB
C
/* Originally written by Bodo Moeller for the OpenSSL project.
|
|
* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the OpenSSL open source
|
|
* license provided above.
|
|
*
|
|
* The elliptic curve binary polynomial software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
|
* Laboratories. */
|
|
|
|
#ifndef OPENSSL_HEADER_EC_INTERNAL_H
|
|
#define OPENSSL_HEADER_EC_INTERNAL_H
|
|
|
|
#include <openssl/base.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/ex_data.h>
|
|
#include <openssl/thread.h>
|
|
#include <openssl/type_check.h>
|
|
|
|
#include "../bn/internal.h"
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
// Cap the size of all field elements and scalars, including custom curves, to
|
|
// 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to
|
|
// be the largest fields anyone plausibly uses.
|
|
#define EC_MAX_SCALAR_BYTES 66
|
|
#define EC_MAX_SCALAR_WORDS ((66 + BN_BYTES - 1) / BN_BYTES)
|
|
|
|
OPENSSL_COMPILE_ASSERT(EC_MAX_SCALAR_WORDS <= BN_SMALL_MAX_WORDS,
|
|
bn_small_functions_applicable);
|
|
|
|
// An EC_SCALAR is an integer fully reduced modulo the order. Only the first
|
|
// |order->width| words are used. An |EC_SCALAR| is specific to an |EC_GROUP|
|
|
// and must not be mixed between groups.
|
|
typedef union {
|
|
// bytes is the representation of the scalar in little-endian order.
|
|
uint8_t bytes[EC_MAX_SCALAR_BYTES];
|
|
BN_ULONG words[EC_MAX_SCALAR_WORDS];
|
|
} EC_SCALAR;
|
|
|
|
struct ec_method_st {
|
|
int (*group_init)(EC_GROUP *);
|
|
void (*group_finish)(EC_GROUP *);
|
|
int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_POINT *,
|
|
BIGNUM *x, BIGNUM *y, BN_CTX *);
|
|
|
|
// Computes |r = g_scalar*generator + p_scalar*p| if |g_scalar| and |p_scalar|
|
|
// are both non-null. Computes |r = g_scalar*generator| if |p_scalar| is null.
|
|
// Computes |r = p_scalar*p| if g_scalar is null. At least one of |g_scalar|
|
|
// and |p_scalar| must be non-null, and |p| must be non-null if |p_scalar| is
|
|
// non-null.
|
|
int (*mul)(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
|
|
const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
|
|
// mul_public performs the same computation as mul. It further assumes that
|
|
// the inputs are public so there is no concern about leaking their values
|
|
// through timing.
|
|
int (*mul_public)(const EC_GROUP *group, EC_POINT *r,
|
|
const EC_SCALAR *g_scalar, const EC_POINT *p,
|
|
const EC_SCALAR *p_scalar, BN_CTX *ctx);
|
|
|
|
// 'field_mul' and 'field_sqr' can be used by 'add' and 'dbl' so that the
|
|
// same implementations of point operations can be used with different
|
|
// optimized implementations of expensive field operations:
|
|
int (*field_mul)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int (*field_sqr)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);
|
|
|
|
int (*field_encode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *); // e.g. to Montgomery
|
|
int (*field_decode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *); // e.g. from Montgomery
|
|
} /* EC_METHOD */;
|
|
|
|
const EC_METHOD *EC_GFp_mont_method(void);
|
|
|
|
struct ec_group_st {
|
|
const EC_METHOD *meth;
|
|
|
|
// Unlike all other |EC_POINT|s, |generator| does not own |generator->group|
|
|
// to avoid a reference cycle.
|
|
EC_POINT *generator;
|
|
BIGNUM order;
|
|
|
|
int curve_name; // optional NID for named curve
|
|
|
|
BN_MONT_CTX *order_mont; // data for ECDSA inverse
|
|
|
|
// The following members are handled by the method functions,
|
|
// even if they appear generic
|
|
|
|
BIGNUM field; // For curves over GF(p), this is the modulus.
|
|
|
|
BIGNUM a, b; // Curve coefficients.
|
|
|
|
int a_is_minus3; // enable optimized point arithmetics for special case
|
|
|
|
CRYPTO_refcount_t references;
|
|
|
|
BN_MONT_CTX *mont; // Montgomery structure.
|
|
|
|
BIGNUM one; // The value one.
|
|
} /* EC_GROUP */;
|
|
|
|
struct ec_point_st {
|
|
// group is an owning reference to |group|, unless this is
|
|
// |group->generator|.
|
|
EC_GROUP *group;
|
|
|
|
BIGNUM X;
|
|
BIGNUM Y;
|
|
BIGNUM Z; // Jacobian projective coordinates:
|
|
// (X, Y, Z) represents (X/Z^2, Y/Z^3) if Z != 0
|
|
} /* EC_POINT */;
|
|
|
|
EC_GROUP *ec_group_new(const EC_METHOD *meth);
|
|
|
|
// ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to
|
|
// |*out|. It returns one on success and zero if |in| is out of range.
|
|
int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
|
const BIGNUM *in);
|
|
|
|
// ec_bignum_to_scalar_unchecked behaves like |ec_bignum_to_scalar| but does not
|
|
// check |in| is fully reduced.
|
|
int ec_bignum_to_scalar_unchecked(const EC_GROUP *group, EC_SCALAR *out,
|
|
const BIGNUM *in);
|
|
|
|
// ec_random_nonzero_scalar sets |out| to a uniformly selected random value from
|
|
// 1 to |group->order| - 1. It returns one on success and zero on error.
|
|
int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
|
const uint8_t additional_data[32]);
|
|
|
|
// ec_point_mul_scalar sets |r| to generator * |g_scalar| + |p| *
|
|
// |p_scalar|. Unlike other functions which take |EC_SCALAR|, |g_scalar| and
|
|
// |p_scalar| need not be fully reduced. They need only contain as many bits as
|
|
// the order.
|
|
int ec_point_mul_scalar(const EC_GROUP *group, EC_POINT *r,
|
|
const EC_SCALAR *g_scalar, const EC_POINT *p,
|
|
const EC_SCALAR *p_scalar, BN_CTX *ctx);
|
|
|
|
// ec_point_mul_scalar_public performs the same computation as
|
|
// ec_point_mul_scalar. It further assumes that the inputs are public so
|
|
// there is no concern about leaking their values through timing.
|
|
int ec_point_mul_scalar_public(const EC_GROUP *group, EC_POINT *r,
|
|
const EC_SCALAR *g_scalar, const EC_POINT *p,
|
|
const EC_SCALAR *p_scalar, BN_CTX *ctx);
|
|
|
|
// ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of
|
|
// |scalar| to |out| and returns one on success or zero on internal error. |out|
|
|
// must have room for |bits| + 1 elements, each of which will be either zero or
|
|
// odd with an absolute value less than 2^w satisfying
|
|
// scalar = \sum_j out[j]*2^j
|
|
// where at most one of any w+1 consecutive digits is non-zero
|
|
// with the exception that the most significant digit may be only
|
|
// w-1 zeros away from that next non-zero digit.
|
|
int ec_compute_wNAF(const EC_GROUP *group, int8_t *out, const EC_SCALAR *scalar,
|
|
size_t bits, int w);
|
|
|
|
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
|
|
const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx);
|
|
|
|
// method functions in simple.c
|
|
int ec_GFp_simple_group_init(EC_GROUP *);
|
|
void ec_GFp_simple_group_finish(EC_GROUP *);
|
|
int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
|
|
BIGNUM *b, BN_CTX *);
|
|
unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *);
|
|
int ec_GFp_simple_point_init(EC_POINT *);
|
|
void ec_GFp_simple_point_finish(EC_POINT *);
|
|
int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *);
|
|
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *);
|
|
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *,
|
|
const BIGNUM *x, const BIGNUM *y,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
const EC_POINT *b, BN_CTX *);
|
|
int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
|
|
int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b,
|
|
BN_CTX *);
|
|
int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
|
|
int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num,
|
|
EC_POINT * [], BN_CTX *);
|
|
int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
|
|
// method functions in montgomery.c
|
|
int ec_GFp_mont_group_init(EC_GROUP *);
|
|
int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
void ec_GFp_mont_group_finish(EC_GROUP *);
|
|
int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *);
|
|
|
|
void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
|
|
|
|
const EC_METHOD *EC_GFp_nistp224_method(void);
|
|
const EC_METHOD *EC_GFp_nistp256_method(void);
|
|
|
|
// EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with
|
|
// x86-64 optimized P256. See http://eprint.iacr.org/2013/816.
|
|
const EC_METHOD *EC_GFp_nistz256_method(void);
|
|
|
|
struct ec_key_st {
|
|
EC_GROUP *group;
|
|
|
|
EC_POINT *pub_key;
|
|
BIGNUM *priv_key;
|
|
|
|
// fixed_k may contain a specific value of 'k', to be used in ECDSA signing.
|
|
// This is only for the FIPS power-on tests.
|
|
BIGNUM *fixed_k;
|
|
|
|
unsigned int enc_flag;
|
|
point_conversion_form_t conv_form;
|
|
|
|
CRYPTO_refcount_t references;
|
|
|
|
ECDSA_METHOD *ecdsa_meth;
|
|
|
|
CRYPTO_EX_DATA ex_data;
|
|
} /* EC_KEY */;
|
|
|
|
struct built_in_curve {
|
|
int nid;
|
|
const uint8_t *oid;
|
|
uint8_t oid_len;
|
|
// comment is a human-readable string describing the curve.
|
|
const char *comment;
|
|
// param_len is the number of bytes needed to store a field element.
|
|
uint8_t param_len;
|
|
// params points to an array of 6*|param_len| bytes which hold the field
|
|
// elements of the following (in big-endian order): prime, a, b, generator x,
|
|
// generator y, order.
|
|
const uint8_t *params;
|
|
const EC_METHOD *method;
|
|
};
|
|
|
|
#define OPENSSL_NUM_BUILT_IN_CURVES 4
|
|
|
|
struct built_in_curves {
|
|
struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES];
|
|
};
|
|
|
|
// OPENSSL_built_in_curves returns a pointer to static information about
|
|
// standard curves. The array is terminated with an entry where |nid| is
|
|
// |NID_undef|.
|
|
const struct built_in_curves *OPENSSL_built_in_curves(void);
|
|
|
|
#if defined(__cplusplus)
|
|
} // extern C
|
|
#endif
|
|
|
|
#endif // OPENSSL_HEADER_EC_INTERNAL_H
|