c196680120
Change-Id: I92419b7d2d8ded8f4868588ad3c24b70ac7f7b1b Reviewed-on: https://boringssl-review.googlesource.com/14864 Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
826 lines
23 KiB
C
826 lines
23 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/rsa.h>
|
|
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/ex_data.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/nid.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "internal.h"
|
|
#include "../internal.h"
|
|
|
|
|
|
static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
|
|
|
|
RSA *RSA_new(void) { return RSA_new_method(NULL); }
|
|
|
|
RSA *RSA_new_method(const ENGINE *engine) {
|
|
RSA *rsa = OPENSSL_malloc(sizeof(RSA));
|
|
if (rsa == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memset(rsa, 0, sizeof(RSA));
|
|
|
|
if (engine) {
|
|
rsa->meth = ENGINE_get_RSA_method(engine);
|
|
}
|
|
|
|
if (rsa->meth == NULL) {
|
|
rsa->meth = (RSA_METHOD*) &RSA_default_method;
|
|
}
|
|
METHOD_ref(rsa->meth);
|
|
|
|
rsa->references = 1;
|
|
rsa->flags = rsa->meth->flags;
|
|
CRYPTO_MUTEX_init(&rsa->lock);
|
|
CRYPTO_new_ex_data(&rsa->ex_data);
|
|
|
|
if (rsa->meth->init && !rsa->meth->init(rsa)) {
|
|
CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data);
|
|
CRYPTO_MUTEX_cleanup(&rsa->lock);
|
|
METHOD_unref(rsa->meth);
|
|
OPENSSL_free(rsa);
|
|
return NULL;
|
|
}
|
|
|
|
return rsa;
|
|
}
|
|
|
|
void RSA_additional_prime_free(RSA_additional_prime *ap) {
|
|
if (ap == NULL) {
|
|
return;
|
|
}
|
|
|
|
BN_clear_free(ap->prime);
|
|
BN_clear_free(ap->exp);
|
|
BN_clear_free(ap->coeff);
|
|
BN_clear_free(ap->r);
|
|
BN_MONT_CTX_free(ap->mont);
|
|
OPENSSL_free(ap);
|
|
}
|
|
|
|
void RSA_free(RSA *rsa) {
|
|
unsigned u;
|
|
|
|
if (rsa == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) {
|
|
return;
|
|
}
|
|
|
|
if (rsa->meth->finish) {
|
|
rsa->meth->finish(rsa);
|
|
}
|
|
METHOD_unref(rsa->meth);
|
|
|
|
CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data);
|
|
|
|
BN_clear_free(rsa->n);
|
|
BN_clear_free(rsa->e);
|
|
BN_clear_free(rsa->d);
|
|
BN_clear_free(rsa->p);
|
|
BN_clear_free(rsa->q);
|
|
BN_clear_free(rsa->dmp1);
|
|
BN_clear_free(rsa->dmq1);
|
|
BN_clear_free(rsa->iqmp);
|
|
BN_MONT_CTX_free(rsa->mont_n);
|
|
BN_MONT_CTX_free(rsa->mont_p);
|
|
BN_MONT_CTX_free(rsa->mont_q);
|
|
for (u = 0; u < rsa->num_blindings; u++) {
|
|
BN_BLINDING_free(rsa->blindings[u]);
|
|
}
|
|
OPENSSL_free(rsa->blindings);
|
|
OPENSSL_free(rsa->blindings_inuse);
|
|
if (rsa->additional_primes != NULL) {
|
|
sk_RSA_additional_prime_pop_free(rsa->additional_primes,
|
|
RSA_additional_prime_free);
|
|
}
|
|
CRYPTO_MUTEX_cleanup(&rsa->lock);
|
|
OPENSSL_free(rsa);
|
|
}
|
|
|
|
int RSA_up_ref(RSA *rsa) {
|
|
CRYPTO_refcount_inc(&rsa->references);
|
|
return 1;
|
|
}
|
|
|
|
void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e,
|
|
const BIGNUM **out_d) {
|
|
if (out_n != NULL) {
|
|
*out_n = rsa->n;
|
|
}
|
|
if (out_e != NULL) {
|
|
*out_e = rsa->e;
|
|
}
|
|
if (out_d != NULL) {
|
|
*out_d = rsa->d;
|
|
}
|
|
}
|
|
|
|
void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p,
|
|
const BIGNUM **out_q) {
|
|
if (out_p != NULL) {
|
|
*out_p = rsa->p;
|
|
}
|
|
if (out_q != NULL) {
|
|
*out_q = rsa->q;
|
|
}
|
|
}
|
|
|
|
void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1,
|
|
const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) {
|
|
if (out_dmp1 != NULL) {
|
|
*out_dmp1 = rsa->dmp1;
|
|
}
|
|
if (out_dmq1 != NULL) {
|
|
*out_dmq1 = rsa->dmq1;
|
|
}
|
|
if (out_iqmp != NULL) {
|
|
*out_iqmp = rsa->iqmp;
|
|
}
|
|
}
|
|
|
|
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
|
|
if (rsa->meth->keygen) {
|
|
return rsa->meth->keygen(rsa, bits, e_value, cb);
|
|
}
|
|
|
|
return rsa_default_keygen(rsa, bits, e_value, cb);
|
|
}
|
|
|
|
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int num_primes,
|
|
BIGNUM *e_value, BN_GENCB *cb) {
|
|
if (rsa->meth->multi_prime_keygen) {
|
|
return rsa->meth->multi_prime_keygen(rsa, bits, num_primes, e_value, cb);
|
|
}
|
|
|
|
return rsa_default_multi_prime_keygen(rsa, bits, num_primes, e_value, cb);
|
|
}
|
|
|
|
int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|
const uint8_t *in, size_t in_len, int padding) {
|
|
if (rsa->meth->encrypt) {
|
|
return rsa->meth->encrypt(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
return rsa_default_encrypt(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
|
|
int padding) {
|
|
size_t out_len;
|
|
|
|
if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
|
|
return -1;
|
|
}
|
|
|
|
if (out_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return out_len;
|
|
}
|
|
|
|
int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|
const uint8_t *in, size_t in_len, int padding) {
|
|
if (rsa->meth->sign_raw) {
|
|
return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
|
|
int padding) {
|
|
size_t out_len;
|
|
|
|
if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
|
|
return -1;
|
|
}
|
|
|
|
if (out_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return out_len;
|
|
}
|
|
|
|
int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
|
const uint8_t *in, size_t in_len, int padding) {
|
|
if (rsa->meth->decrypt) {
|
|
return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding);
|
|
}
|
|
|
|
int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
|
|
int padding) {
|
|
size_t out_len;
|
|
|
|
if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
|
|
return -1;
|
|
}
|
|
|
|
if (out_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return out_len;
|
|
}
|
|
|
|
int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
|
|
int padding) {
|
|
size_t out_len;
|
|
|
|
if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
|
|
return -1;
|
|
}
|
|
|
|
if (out_len > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return out_len;
|
|
}
|
|
|
|
unsigned RSA_size(const RSA *rsa) {
|
|
if (rsa->meth->size) {
|
|
return rsa->meth->size(rsa);
|
|
}
|
|
|
|
return rsa_default_size(rsa);
|
|
}
|
|
|
|
int RSA_is_opaque(const RSA *rsa) {
|
|
return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE);
|
|
}
|
|
|
|
int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
|
|
CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
|
|
int index;
|
|
if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, dup_func,
|
|
free_func)) {
|
|
return -1;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
int RSA_set_ex_data(RSA *d, int idx, void *arg) {
|
|
return CRYPTO_set_ex_data(&d->ex_data, idx, arg);
|
|
}
|
|
|
|
void *RSA_get_ex_data(const RSA *d, int idx) {
|
|
return CRYPTO_get_ex_data(&d->ex_data, idx);
|
|
}
|
|
|
|
/* SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's
|
|
* the length of an MD5 and SHA1 hash. */
|
|
static const unsigned SSL_SIG_LENGTH = 36;
|
|
|
|
/* pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is
|
|
* to be signed with PKCS#1. */
|
|
struct pkcs1_sig_prefix {
|
|
/* nid identifies the hash function. */
|
|
int nid;
|
|
/* len is the number of bytes of |bytes| which are valid. */
|
|
uint8_t len;
|
|
/* bytes contains the DER bytes. */
|
|
uint8_t bytes[19];
|
|
};
|
|
|
|
/* kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with
|
|
* different hash functions. */
|
|
static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = {
|
|
{
|
|
NID_md5,
|
|
18,
|
|
{0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
|
|
0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
|
|
},
|
|
{
|
|
NID_sha1,
|
|
15,
|
|
{0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
|
|
0x00, 0x04, 0x14},
|
|
},
|
|
{
|
|
NID_sha224,
|
|
19,
|
|
{0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
|
|
0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
|
|
},
|
|
{
|
|
NID_sha256,
|
|
19,
|
|
{0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
|
|
0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
|
|
},
|
|
{
|
|
NID_sha384,
|
|
19,
|
|
{0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
|
|
0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
|
|
},
|
|
{
|
|
NID_sha512,
|
|
19,
|
|
{0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
|
|
0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
|
|
},
|
|
{
|
|
NID_undef, 0, {0},
|
|
},
|
|
};
|
|
|
|
int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len,
|
|
int *is_alloced, int hash_nid, const uint8_t *msg,
|
|
size_t msg_len) {
|
|
unsigned i;
|
|
|
|
if (hash_nid == NID_md5_sha1) {
|
|
/* Special case: SSL signature, just check the length. */
|
|
if (msg_len != SSL_SIG_LENGTH) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
*out_msg = (uint8_t*) msg;
|
|
*out_msg_len = SSL_SIG_LENGTH;
|
|
*is_alloced = 0;
|
|
return 1;
|
|
}
|
|
|
|
for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) {
|
|
const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i];
|
|
if (sig_prefix->nid != hash_nid) {
|
|
continue;
|
|
}
|
|
|
|
const uint8_t* prefix = sig_prefix->bytes;
|
|
unsigned prefix_len = sig_prefix->len;
|
|
unsigned signed_msg_len;
|
|
uint8_t *signed_msg;
|
|
|
|
signed_msg_len = prefix_len + msg_len;
|
|
if (signed_msg_len < prefix_len) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG);
|
|
return 0;
|
|
}
|
|
|
|
signed_msg = OPENSSL_malloc(signed_msg_len);
|
|
if (!signed_msg) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_memcpy(signed_msg, prefix, prefix_len);
|
|
OPENSSL_memcpy(signed_msg + prefix_len, msg, msg_len);
|
|
|
|
*out_msg = signed_msg;
|
|
*out_msg_len = signed_msg_len;
|
|
*is_alloced = 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out,
|
|
unsigned *out_len, RSA *rsa) {
|
|
const unsigned rsa_size = RSA_size(rsa);
|
|
int ret = 0;
|
|
uint8_t *signed_msg;
|
|
size_t signed_msg_len;
|
|
int signed_msg_is_alloced = 0;
|
|
size_t size_t_out_len;
|
|
|
|
if (rsa->meth->sign) {
|
|
return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa);
|
|
}
|
|
|
|
if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len,
|
|
&signed_msg_is_alloced, hash_nid, in, in_len)) {
|
|
return 0;
|
|
}
|
|
|
|
if (rsa_size < RSA_PKCS1_PADDING_SIZE ||
|
|
signed_msg_len > rsa_size - RSA_PKCS1_PADDING_SIZE) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);
|
|
goto finish;
|
|
}
|
|
|
|
if (RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg,
|
|
signed_msg_len, RSA_PKCS1_PADDING)) {
|
|
*out_len = size_t_out_len;
|
|
ret = 1;
|
|
}
|
|
|
|
finish:
|
|
if (signed_msg_is_alloced) {
|
|
OPENSSL_free(signed_msg);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len,
|
|
const uint8_t *sig, size_t sig_len, RSA *rsa) {
|
|
if (rsa->n == NULL || rsa->e == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|
return 0;
|
|
}
|
|
|
|
const size_t rsa_size = RSA_size(rsa);
|
|
uint8_t *buf = NULL;
|
|
int ret = 0;
|
|
uint8_t *signed_msg = NULL;
|
|
size_t signed_msg_len, len;
|
|
int signed_msg_is_alloced = 0;
|
|
|
|
if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
buf = OPENSSL_malloc(rsa_size);
|
|
if (!buf) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len,
|
|
RSA_PKCS1_PADDING)) {
|
|
goto out;
|
|
}
|
|
|
|
if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len,
|
|
&signed_msg_is_alloced, hash_nid, msg, msg_len)) {
|
|
goto out;
|
|
}
|
|
|
|
/* Check that no other information follows the hash value (FIPS 186-4 Section
|
|
* 5.5) and it matches the expected hash. */
|
|
if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE);
|
|
goto out;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
out:
|
|
OPENSSL_free(buf);
|
|
if (signed_msg_is_alloced) {
|
|
OPENSSL_free(signed_msg);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void bn_free_and_null(BIGNUM **bn) {
|
|
BN_free(*bn);
|
|
*bn = NULL;
|
|
}
|
|
|
|
int RSA_check_key(const RSA *key) {
|
|
BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp_times_q;
|
|
BN_CTX *ctx;
|
|
int ok = 0, has_crt_values;
|
|
|
|
if (RSA_is_opaque(key)) {
|
|
/* Opaque keys can't be checked. */
|
|
return 1;
|
|
}
|
|
|
|
if ((key->p != NULL) != (key->q != NULL)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN);
|
|
return 0;
|
|
}
|
|
|
|
if (!key->n || !key->e) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
|
return 0;
|
|
}
|
|
|
|
if (!key->d || !key->p) {
|
|
/* For a public key, or without p and q, there's nothing that can be
|
|
* checked. */
|
|
return 1;
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
BN_init(&n);
|
|
BN_init(&pm1);
|
|
BN_init(&qm1);
|
|
BN_init(&lcm);
|
|
BN_init(&gcd);
|
|
BN_init(&de);
|
|
BN_init(&dmp1);
|
|
BN_init(&dmq1);
|
|
BN_init(&iqmp_times_q);
|
|
|
|
if (!BN_mul(&n, key->p, key->q, ctx) ||
|
|
/* lcm = lcm(prime-1, for all primes) */
|
|
!BN_sub(&pm1, key->p, BN_value_one()) ||
|
|
!BN_sub(&qm1, key->q, BN_value_one()) ||
|
|
!BN_mul(&lcm, &pm1, &qm1, ctx) ||
|
|
!BN_gcd(&gcd, &pm1, &qm1, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
|
goto out;
|
|
}
|
|
|
|
size_t num_additional_primes = 0;
|
|
if (key->additional_primes != NULL) {
|
|
num_additional_primes = sk_RSA_additional_prime_num(key->additional_primes);
|
|
}
|
|
|
|
for (size_t i = 0; i < num_additional_primes; i++) {
|
|
const RSA_additional_prime *ap =
|
|
sk_RSA_additional_prime_value(key->additional_primes, i);
|
|
if (!BN_mul(&n, &n, ap->prime, ctx) ||
|
|
!BN_sub(&pm1, ap->prime, BN_value_one()) ||
|
|
!BN_mul(&lcm, &lcm, &pm1, ctx) ||
|
|
!BN_gcd(&gcd, &gcd, &pm1, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (!BN_div(&lcm, NULL, &lcm, &gcd, ctx) ||
|
|
!BN_gcd(&gcd, &pm1, &qm1, ctx) ||
|
|
/* de = d*e mod lcm(prime-1, for all primes). */
|
|
!BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
|
goto out;
|
|
}
|
|
|
|
if (BN_cmp(&n, key->n) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q);
|
|
goto out;
|
|
}
|
|
|
|
if (!BN_is_one(&de)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1);
|
|
goto out;
|
|
}
|
|
|
|
has_crt_values = key->dmp1 != NULL;
|
|
if (has_crt_values != (key->dmq1 != NULL) ||
|
|
has_crt_values != (key->iqmp != NULL)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES);
|
|
goto out;
|
|
}
|
|
|
|
if (has_crt_values && num_additional_primes == 0) {
|
|
if (/* dmp1 = d mod (p-1) */
|
|
!BN_mod(&dmp1, key->d, &pm1, ctx) ||
|
|
/* dmq1 = d mod (q-1) */
|
|
!BN_mod(&dmq1, key->d, &qm1, ctx) ||
|
|
/* iqmp = q^-1 mod p */
|
|
!BN_mod_mul(&iqmp_times_q, key->iqmp, key->q, key->p, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
|
goto out;
|
|
}
|
|
|
|
if (BN_cmp(&dmp1, key->dmp1) != 0 ||
|
|
BN_cmp(&dmq1, key->dmq1) != 0 ||
|
|
BN_cmp(key->iqmp, key->p) >= 0 ||
|
|
!BN_is_one(&iqmp_times_q)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ok = 1;
|
|
|
|
out:
|
|
BN_free(&n);
|
|
BN_free(&pm1);
|
|
BN_free(&qm1);
|
|
BN_free(&lcm);
|
|
BN_free(&gcd);
|
|
BN_free(&de);
|
|
BN_free(&dmp1);
|
|
BN_free(&dmq1);
|
|
BN_free(&iqmp_times_q);
|
|
BN_CTX_free(ctx);
|
|
|
|
return ok;
|
|
}
|
|
|
|
int RSA_recover_crt_params(RSA *rsa) {
|
|
BN_CTX *ctx;
|
|
BIGNUM *totient, *rem, *multiple, *p_plus_q, *p_minus_q;
|
|
int ok = 0;
|
|
|
|
if (rsa->n == NULL || rsa->e == NULL || rsa->d == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY);
|
|
return 0;
|
|
}
|
|
|
|
if (rsa->p || rsa->q || rsa->dmp1 || rsa->dmq1 || rsa->iqmp) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_PARAMS_ALREADY_GIVEN);
|
|
return 0;
|
|
}
|
|
|
|
if (rsa->additional_primes != NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_CANNOT_RECOVER_MULTI_PRIME_KEY);
|
|
return 0;
|
|
}
|
|
|
|
/* This uses the algorithm from section 9B of the RSA paper:
|
|
* http://people.csail.mit.edu/rivest/Rsapaper.pdf */
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
totient = BN_CTX_get(ctx);
|
|
rem = BN_CTX_get(ctx);
|
|
multiple = BN_CTX_get(ctx);
|
|
p_plus_q = BN_CTX_get(ctx);
|
|
p_minus_q = BN_CTX_get(ctx);
|
|
|
|
if (totient == NULL || rem == NULL || multiple == NULL || p_plus_q == NULL ||
|
|
p_minus_q == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
/* ed-1 is a small multiple of φ(n). */
|
|
if (!BN_mul(totient, rsa->e, rsa->d, ctx) ||
|
|
!BN_sub_word(totient, 1) ||
|
|
/* φ(n) =
|
|
* pq - p - q + 1 =
|
|
* n - (p + q) + 1
|
|
*
|
|
* Thus n is a reasonable estimate for φ(n). So, (ed-1)/n will be very
|
|
* close. But, when we calculate the quotient, we'll be truncating it
|
|
* because we discard the remainder. Thus (ed-1)/multiple will be >= n,
|
|
* which the totient cannot be. So we add one to the estimate.
|
|
*
|
|
* Consider ed-1 as:
|
|
*
|
|
* multiple * (n - (p+q) + 1) =
|
|
* multiple*n - multiple*(p+q) + multiple
|
|
*
|
|
* When we divide by n, the first term becomes multiple and, since
|
|
* multiple and p+q is tiny compared to n, the second and third terms can
|
|
* be ignored. Thus I claim that subtracting one from the estimate is
|
|
* sufficient. */
|
|
!BN_div(multiple, NULL, totient, rsa->n, ctx) ||
|
|
!BN_add_word(multiple, 1) ||
|
|
!BN_div(totient, rem, totient, multiple, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB);
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_is_zero(rem)) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
|
|
goto err;
|
|
}
|
|
|
|
rsa->p = BN_new();
|
|
rsa->q = BN_new();
|
|
rsa->dmp1 = BN_new();
|
|
rsa->dmq1 = BN_new();
|
|
rsa->iqmp = BN_new();
|
|
if (rsa->p == NULL || rsa->q == NULL || rsa->dmp1 == NULL || rsa->dmq1 ==
|
|
NULL || rsa->iqmp == NULL) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
/* φ(n) = n - (p + q) + 1 =>
|
|
* n - totient + 1 = p + q */
|
|
if (!BN_sub(p_plus_q, rsa->n, totient) ||
|
|
!BN_add_word(p_plus_q, 1) ||
|
|
/* p - q = sqrt((p+q)^2 - 4n) */
|
|
!BN_sqr(rem, p_plus_q, ctx) ||
|
|
!BN_lshift(multiple, rsa->n, 2) ||
|
|
!BN_sub(rem, rem, multiple) ||
|
|
!BN_sqrt(p_minus_q, rem, ctx) ||
|
|
/* q is 1/2 (p+q)-(p-q) */
|
|
!BN_sub(rsa->q, p_plus_q, p_minus_q) ||
|
|
!BN_rshift1(rsa->q, rsa->q) ||
|
|
!BN_div(rsa->p, NULL, rsa->n, rsa->q, ctx) ||
|
|
!BN_mul(multiple, rsa->p, rsa->q, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB);
|
|
goto err;
|
|
}
|
|
|
|
if (BN_cmp(multiple, rsa->n) != 0) {
|
|
OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_sub(rem, rsa->p, BN_value_one()) ||
|
|
!BN_mod(rsa->dmp1, rsa->d, rem, ctx) ||
|
|
!BN_sub(rem, rsa->q, BN_value_one()) ||
|
|
!BN_mod(rsa->dmq1, rsa->d, rem, ctx) ||
|
|
!BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx)) {
|
|
OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB);
|
|
goto err;
|
|
}
|
|
|
|
ok = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
if (!ok) {
|
|
bn_free_and_null(&rsa->p);
|
|
bn_free_and_null(&rsa->q);
|
|
bn_free_and_null(&rsa->dmp1);
|
|
bn_free_and_null(&rsa->dmq1);
|
|
bn_free_and_null(&rsa->iqmp);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
|
|
size_t len) {
|
|
if (rsa->meth->private_transform) {
|
|
return rsa->meth->private_transform(rsa, out, in, len);
|
|
}
|
|
|
|
return rsa_default_private_transform(rsa, out, in, len);
|
|
}
|
|
|
|
int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) {
|
|
return 1;
|
|
}
|