3cfeb9522b
As a precursor to removing the code entirely later, disable the protocol by default. Callers must use SSL_CTX_set_min_version to enable it. This change also makes SSLv3_method *not* enable SSL 3.0. Normally version-specific methods set the minimum and maximum version to their version. SSLv3_method leaves the minimum at the default, so we will treat it as all versions disabled. To help debugging, the error code is switched from WRONG_SSL_VERSION to a new NO_SUPPORTED_VERSIONS_ENABLED. This also defines OPENSSL_NO_SSL3 and OPENSSL_NO_SSL3_METHOD to kick in any no-ssl3 build paths in consumers which should provide a convenient hook for any upstreaming changes that may be needed. (OPENSSL_NO_SSL3 existed in older versions of OpenSSL, so in principle one may encounter an OpenSSL with the same settings.) Change-Id: I96a8f2f568eb77b2537b3a774b2f7108bd67dd0c Reviewed-on: https://boringssl-review.googlesource.com/14031 Reviewed-by: David Benjamin <davidben@google.com> Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> |
||
---|---|---|
.. | ||
runner | ||
async_bio.cc | ||
async_bio.h | ||
bssl_shim.cc | ||
CMakeLists.txt | ||
packeted_bio.cc | ||
packeted_bio.h | ||
PORTING.md | ||
README.md | ||
test_config.cc | ||
test_config.h |
BoringSSL SSL Tests
This directory contains BoringSSL's protocol-level test suite.
Testing a TLS implementation can be difficult. We need to produce invalid but sufficiently correct handshakes to get our implementation close to its edge cases. TLS's cryptographic steps mean we cannot use a transcript and effectively need a TLS implementation on the other end. But we do not wish to litter BoringSSL with options for bugs to test against.
Instead, we use a fork of the Go crypto/tls
package, heavily patched with
configurable bugs. This code, along with a test suite and harness written in Go,
lives in the runner
directory. The harness runs BoringSSL via a C/C++ shim
binary which lives in this directory. All communication with the shim binary
occurs with command-line flags, sockets, and standard I/O.
This strategy also ensures we always test against a second implementation. All features should be implemented twice, once in C for BoringSSL and once in Go for testing. If possible, the Go code should be suitable for potentially upstreaming. However, sometimes test code has different needs. For example, our test DTLS code enforces strict ordering on sequence numbers and has controlled packet drop simulation.
To run the tests manually, run go test
from the runner
directory. It takes
command-line flags found at the top of runner/runner.go
. The -help
option
also works after using go test -c
to make a runner.test
binary first.
If adding a new test, these files may be a good starting point:
runner/runner.go
: the test harness and all the individual tests.runner/common.go
: contains theConfig
andProtocolBugs
struct which control the Go TLS implementation's behavior.test_config.h
,test_config.cc
: the command-line flags which control the shim's behavior.bssl_shim.cc
: the shim binary itself.
For porting the test suite to a different implementation see PORTING.md.