boringssl/ssl/test/bssl_shim.cc
David Benjamin 9d0847ae6d Add some missing error failure checks.
Found while diagnosing some crashes and hangs in the malloc tests. This (and
the follow-up) get us further but does not quite let the malloc tests pass
quietly, even without valgrind. DTLS silently ignores some malloc failures
(confusion with silently dropping bad packets) which then translate to hangs.

Change-Id: Ief06a671e0973d09d2883432b89a86259e346653
Reviewed-on: https://boringssl-review.googlesource.com/3482
Reviewed-by: Adam Langley <agl@google.com>
2015-02-17 20:55:56 +00:00

832 lines
25 KiB
C++

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/base.h>
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <netinet/in.h>
#include <signal.h>
#include <sys/socket.h>
#include <unistd.h>
#endif
#include <string.h>
#include <sys/types.h>
#include <openssl/bio.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/ssl.h>
#include "async_bio.h"
#include "packeted_bio.h"
#include "scoped_types.h"
#include "test_config.h"
static int Usage(const char *program) {
fprintf(stderr, "Usage: %s [flags...]\n", program);
return 1;
}
struct TestState {
TestState() : cert_ready(false), early_callback_called(false) {}
ScopedEVP_PKEY channel_id;
bool cert_ready;
ScopedSSL_SESSION session;
ScopedSSL_SESSION pending_session;
bool early_callback_called;
};
static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int index, long argl, void *argp) {
delete ((TestState *)ptr);
}
static int g_config_index = 0;
static int g_clock_index = 0;
static int g_state_index = 0;
static bool SetConfigPtr(SSL *ssl, const TestConfig *config) {
return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
}
static const TestConfig *GetConfigPtr(SSL *ssl) {
return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
}
static bool SetClockPtr(SSL *ssl, OPENSSL_timeval *clock) {
return SSL_set_ex_data(ssl, g_clock_index, (void *)clock) == 1;
}
static OPENSSL_timeval *GetClockPtr(SSL *ssl) {
return (OPENSSL_timeval *)SSL_get_ex_data(ssl, g_clock_index);
}
static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> async) {
if (SSL_set_ex_data(ssl, g_state_index, (void *)async.get()) == 1) {
async.release();
return true;
}
return false;
}
static TestState *GetTestState(SSL *ssl) {
return (TestState *)SSL_get_ex_data(ssl, g_state_index);
}
static ScopedEVP_PKEY LoadPrivateKey(const std::string &file) {
ScopedBIO bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
ScopedEVP_PKEY pkey(PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
return pkey;
}
static bool InstallCertificate(SSL *ssl) {
const TestConfig *config = GetConfigPtr(ssl);
if (!config->key_file.empty() &&
!SSL_use_PrivateKey_file(ssl, config->key_file.c_str(),
SSL_FILETYPE_PEM)) {
return false;
}
if (!config->cert_file.empty() &&
!SSL_use_certificate_file(ssl, config->cert_file.c_str(),
SSL_FILETYPE_PEM)) {
return false;
}
return true;
}
static int SelectCertificateCallback(const struct ssl_early_callback_ctx *ctx) {
const TestConfig *config = GetConfigPtr(ctx->ssl);
GetTestState(ctx->ssl)->early_callback_called = true;
if (config->expected_server_name.empty()) {
return 1;
}
const uint8_t *extension_data;
size_t extension_len;
CBS extension, server_name_list, host_name;
uint8_t name_type;
if (!SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name,
&extension_data,
&extension_len)) {
fprintf(stderr, "Could not find server_name extension.\n");
return -1;
}
CBS_init(&extension, extension_data, extension_len);
if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
CBS_len(&extension) != 0 ||
!CBS_get_u8(&server_name_list, &name_type) ||
name_type != TLSEXT_NAMETYPE_host_name ||
!CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
CBS_len(&server_name_list) != 0) {
fprintf(stderr, "Could not decode server_name extension.\n");
return -1;
}
if (!CBS_mem_equal(&host_name,
(const uint8_t*)config->expected_server_name.data(),
config->expected_server_name.size())) {
fprintf(stderr, "Server name mismatch.\n");
}
return 1;
}
static int SkipVerify(int preverify_ok, X509_STORE_CTX *store_ctx) {
return 1;
}
static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
unsigned int *out_len, void *arg) {
const TestConfig *config = GetConfigPtr(ssl);
if (config->advertise_npn.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
*out = (const uint8_t*)config->advertise_npn.data();
*out_len = config->advertise_npn.size();
return SSL_TLSEXT_ERR_OK;
}
static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
const TestConfig *config = GetConfigPtr(ssl);
if (config->select_next_proto.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
*out = (uint8_t*)config->select_next_proto.data();
*outlen = config->select_next_proto.size();
return SSL_TLSEXT_ERR_OK;
}
static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
const TestConfig *config = GetConfigPtr(ssl);
if (config->select_alpn.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
if (!config->expected_advertised_alpn.empty() &&
(config->expected_advertised_alpn.size() != inlen ||
memcmp(config->expected_advertised_alpn.data(),
in, inlen) != 0)) {
fprintf(stderr, "bad ALPN select callback inputs\n");
exit(1);
}
*out = (const uint8_t*)config->select_alpn.data();
*outlen = config->select_alpn.size();
return SSL_TLSEXT_ERR_OK;
}
static unsigned PskClientCallback(SSL *ssl, const char *hint,
char *out_identity,
unsigned max_identity_len,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetConfigPtr(ssl);
if (strcmp(hint ? hint : "", config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Server PSK hint did not match.\n");
return 0;
}
// Account for the trailing '\0' for the identity.
if (config->psk_identity.size() >= max_identity_len ||
config->psk.size() > max_psk_len) {
fprintf(stderr, "PSK buffers too small\n");
return 0;
}
BUF_strlcpy(out_identity, config->psk_identity.c_str(),
max_identity_len);
memcpy(out_psk, config->psk.data(), config->psk.size());
return config->psk.size();
}
static unsigned PskServerCallback(SSL *ssl, const char *identity,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetConfigPtr(ssl);
if (strcmp(identity, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Client PSK identity did not match.\n");
return 0;
}
if (config->psk.size() > max_psk_len) {
fprintf(stderr, "PSK buffers too small\n");
return 0;
}
memcpy(out_psk, config->psk.data(), config->psk.size());
return config->psk.size();
}
static void CurrentTimeCallback(SSL *ssl, OPENSSL_timeval *out_clock) {
*out_clock = *GetClockPtr(ssl);
}
static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) {
*out_pkey = GetTestState(ssl)->channel_id.release();
}
static int CertCallback(SSL *ssl, void *arg) {
if (!GetTestState(ssl)->cert_ready) {
return -1;
}
if (!InstallCertificate(ssl)) {
return 0;
}
return 1;
}
static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len,
int *copy) {
TestState *async_state = GetTestState(ssl);
if (async_state->session) {
*copy = 0;
return async_state->session.release();
} else if (async_state->pending_session) {
return SSL_magic_pending_session_ptr();
} else {
return NULL;
}
}
static ScopedSSL_CTX SetupCtx(const TestConfig *config) {
ScopedSSL_CTX ssl_ctx(SSL_CTX_new(
config->is_dtls ? DTLS_method() : TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
if (config->is_dtls) {
// DTLS needs read-ahead to function on a datagram BIO.
//
// TODO(davidben): this should not be necessary. DTLS code should only
// expect a datagram BIO.
SSL_CTX_set_read_ahead(ssl_ctx.get(), 1);
}
if (!SSL_CTX_set_ecdh_auto(ssl_ctx.get(), 1)) {
return nullptr;
}
if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), "ALL")) {
return nullptr;
}
ScopedDH dh(DH_get_2048_256(NULL));
if (!dh || !SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
return nullptr;
}
if (config->async && config->is_server) {
// Disable the internal session cache. To test asynchronous session lookup,
// we use an external session cache.
SSL_CTX_set_session_cache_mode(
ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL);
SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback);
} else {
SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);
}
ssl_ctx->select_certificate_cb = SelectCertificateCallback;
SSL_CTX_set_next_protos_advertised_cb(
ssl_ctx.get(), NextProtosAdvertisedCallback, NULL);
if (!config->select_next_proto.empty()) {
SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
NULL);
}
if (!config->select_alpn.empty()) {
SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
}
ssl_ctx->tlsext_channel_id_enabled_new = 1;
SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback);
ssl_ctx->current_time_cb = CurrentTimeCallback;
return ssl_ctx;
}
static int RetryAsync(SSL *ssl, int ret, BIO *async,
OPENSSL_timeval *clock_delta) {
// No error; don't retry.
if (ret >= 0) {
return 0;
}
if (clock_delta->tv_usec != 0 || clock_delta->tv_sec != 0) {
// Process the timeout and retry.
OPENSSL_timeval *clock = GetClockPtr(ssl);
clock->tv_usec += clock_delta->tv_usec;
clock->tv_sec += clock->tv_usec / 1000000;
clock->tv_usec %= 1000000;
clock->tv_sec += clock_delta->tv_sec;
memset(clock_delta, 0, sizeof(*clock_delta));
if (DTLSv1_handle_timeout(ssl) < 0) {
printf("Error retransmitting.\n");
return 0;
}
return 1;
}
// See if we needed to read or write more. If so, allow one byte through on
// the appropriate end to maximally stress the state machine.
switch (SSL_get_error(ssl, ret)) {
case SSL_ERROR_WANT_READ:
AsyncBioAllowRead(async, 1);
return 1;
case SSL_ERROR_WANT_WRITE:
AsyncBioAllowWrite(async, 1);
return 1;
case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: {
ScopedEVP_PKEY pkey = LoadPrivateKey(GetConfigPtr(ssl)->send_channel_id);
if (!pkey) {
return 0;
}
GetTestState(ssl)->channel_id = std::move(pkey);
return 1;
}
case SSL_ERROR_WANT_X509_LOOKUP:
GetTestState(ssl)->cert_ready = true;
return 1;
case SSL_ERROR_PENDING_SESSION:
GetTestState(ssl)->session =
std::move(GetTestState(ssl)->pending_session);
return 1;
default:
return 0;
}
}
static int DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
const TestConfig *config, bool is_resume,
int fd, SSL_SESSION *session) {
OPENSSL_timeval clock = {0}, clock_delta = {0};
ScopedSSL ssl(SSL_new(ssl_ctx));
if (!ssl) {
BIO_print_errors_fp(stdout);
return 1;
}
if (!SetConfigPtr(ssl.get(), config) ||
!SetClockPtr(ssl.get(), &clock) |
!SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
BIO_print_errors_fp(stdout);
return 1;
}
if (config->fallback_scsv) {
if (!SSL_enable_fallback_scsv(ssl.get())) {
BIO_print_errors_fp(stdout);
return 1;
}
}
if (config->async) {
// TODO(davidben): Also test |s->ctx->client_cert_cb| on the client and
// |s->ctx->select_certificate_cb| on the server.
SSL_set_cert_cb(ssl.get(), CertCallback, NULL);
} else if (!InstallCertificate(ssl.get())) {
BIO_print_errors_fp(stdout);
return 1;
}
if (config->require_any_client_certificate) {
SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
SkipVerify);
}
if (config->false_start) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START);
}
if (config->cbc_record_splitting) {
SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING);
}
if (config->partial_write) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
}
if (config->no_tls12) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
}
if (config->no_tls11) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
}
if (config->no_tls1) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
}
if (config->no_ssl3) {
SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3);
}
if (config->tls_d5_bug) {
SSL_set_options(ssl.get(), SSL_OP_TLS_D5_BUG);
}
if (config->allow_unsafe_legacy_renegotiation) {
SSL_set_options(ssl.get(), SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION);
}
if (!config->expected_channel_id.empty()) {
SSL_enable_tls_channel_id(ssl.get());
}
if (!config->send_channel_id.empty()) {
SSL_enable_tls_channel_id(ssl.get());
if (!config->async) {
// The async case will be supplied by |ChannelIdCallback|.
ScopedEVP_PKEY pkey = LoadPrivateKey(config->send_channel_id);
if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) {
BIO_print_errors_fp(stdout);
return 1;
}
}
}
if (!config->host_name.empty() &&
!SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) {
BIO_print_errors_fp(stdout);
return 1;
}
if (!config->advertise_alpn.empty() &&
SSL_set_alpn_protos(ssl.get(),
(const uint8_t *)config->advertise_alpn.data(),
config->advertise_alpn.size()) != 0) {
BIO_print_errors_fp(stdout);
return 1;
}
if (!config->psk.empty()) {
SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
}
if (!config->psk_identity.empty() &&
!SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) {
BIO_print_errors_fp(stdout);
return 1;
}
if (!config->srtp_profiles.empty() &&
!SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) {
BIO_print_errors_fp(stdout);
return 1;
}
if (config->enable_ocsp_stapling &&
!SSL_enable_ocsp_stapling(ssl.get())) {
BIO_print_errors_fp(stdout);
return 1;
}
if (config->enable_signed_cert_timestamps &&
!SSL_enable_signed_cert_timestamps(ssl.get())) {
BIO_print_errors_fp(stdout);
return 1;
}
SSL_enable_fastradio_padding(ssl.get(), config->fastradio_padding);
if (config->min_version != 0) {
SSL_set_min_version(ssl.get(), (uint16_t)config->min_version);
}
if (config->max_version != 0) {
SSL_set_max_version(ssl.get(), (uint16_t)config->max_version);
}
if (config->mtu != 0) {
SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
SSL_set_mtu(ssl.get(), config->mtu);
}
ScopedBIO bio(BIO_new_fd(fd, 1 /* take ownership */));
if (!bio) {
BIO_print_errors_fp(stdout);
return 1;
}
if (config->is_dtls) {
ScopedBIO packeted = PacketedBioCreate(&clock_delta);
BIO_push(packeted.get(), bio.release());
bio = std::move(packeted);
}
BIO *async = NULL;
if (config->async) {
ScopedBIO async_scoped =
config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
BIO_push(async_scoped.get(), bio.release());
async = async_scoped.get();
bio = std::move(async_scoped);
}
SSL_set_bio(ssl.get(), bio.get(), bio.get());
bio.release(); // SSL_set_bio takes ownership.
if (session != NULL) {
if (!config->is_server) {
if (SSL_set_session(ssl.get(), session) != 1) {
fprintf(stderr, "failed to set session\n");
return 2;
}
} else if (config->async) {
// The internal session cache is disabled, so install the session
// manually.
GetTestState(ssl.get())->pending_session.reset(
SSL_SESSION_up_ref(session));
}
}
int ret;
if (config->implicit_handshake) {
if (config->is_server) {
SSL_set_accept_state(ssl.get());
} else {
SSL_set_connect_state(ssl.get());
}
} else {
do {
if (config->is_server) {
ret = SSL_accept(ssl.get());
} else {
ret = SSL_connect(ssl.get());
}
} while (config->async && RetryAsync(ssl.get(), ret, async, &clock_delta));
if (ret != 1) {
BIO_print_errors_fp(stdout);
return 2;
}
if (is_resume &&
(!!SSL_session_reused(ssl.get()) == config->expect_session_miss)) {
fprintf(stderr, "session was%s reused\n",
SSL_session_reused(ssl.get()) ? "" : " not");
return 2;
}
if (!config->expected_server_name.empty()) {
const char *server_name =
SSL_get_servername(ssl.get(), TLSEXT_NAMETYPE_host_name);
if (server_name != config->expected_server_name) {
fprintf(stderr, "servername mismatch (got %s; want %s)\n",
server_name, config->expected_server_name.c_str());
return 2;
}
if (!GetTestState(ssl.get())->early_callback_called) {
fprintf(stderr, "early callback not called\n");
return 2;
}
}
if (!config->expected_certificate_types.empty()) {
uint8_t *certificate_types;
int num_certificate_types =
SSL_get0_certificate_types(ssl.get(), &certificate_types);
if (num_certificate_types !=
(int)config->expected_certificate_types.size() ||
memcmp(certificate_types,
config->expected_certificate_types.data(),
num_certificate_types) != 0) {
fprintf(stderr, "certificate types mismatch\n");
return 2;
}
}
if (!config->expected_next_proto.empty()) {
const uint8_t *next_proto;
unsigned next_proto_len;
SSL_get0_next_proto_negotiated(ssl.get(), &next_proto, &next_proto_len);
if (next_proto_len != config->expected_next_proto.size() ||
memcmp(next_proto, config->expected_next_proto.data(),
next_proto_len) != 0) {
fprintf(stderr, "negotiated next proto mismatch\n");
return 2;
}
}
if (!config->expected_alpn.empty()) {
const uint8_t *alpn_proto;
unsigned alpn_proto_len;
SSL_get0_alpn_selected(ssl.get(), &alpn_proto, &alpn_proto_len);
if (alpn_proto_len != config->expected_alpn.size() ||
memcmp(alpn_proto, config->expected_alpn.data(),
alpn_proto_len) != 0) {
fprintf(stderr, "negotiated alpn proto mismatch\n");
return 2;
}
}
if (!config->expected_channel_id.empty()) {
uint8_t channel_id[64];
if (!SSL_get_tls_channel_id(ssl.get(), channel_id, sizeof(channel_id))) {
fprintf(stderr, "no channel id negotiated\n");
return 2;
}
if (config->expected_channel_id.size() != 64 ||
memcmp(config->expected_channel_id.data(),
channel_id, 64) != 0) {
fprintf(stderr, "channel id mismatch\n");
return 2;
}
}
if (config->expect_extended_master_secret) {
if (!ssl->session->extended_master_secret) {
fprintf(stderr, "No EMS for session when expected");
return 2;
}
}
if (!config->expected_ocsp_response.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_ocsp_response(ssl.get(), &data, &len);
if (config->expected_ocsp_response.size() != len ||
memcmp(config->expected_ocsp_response.data(), data, len) != 0) {
fprintf(stderr, "OCSP response mismatch\n");
return 2;
}
}
if (!config->expected_signed_cert_timestamps.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_signed_cert_timestamp_list(ssl.get(), &data, &len);
if (config->expected_signed_cert_timestamps.size() != len ||
memcmp(config->expected_signed_cert_timestamps.data(),
data, len) != 0) {
fprintf(stderr, "SCT list mismatch\n");
return 2;
}
}
}
if (config->renegotiate) {
if (config->async) {
fprintf(stderr, "-renegotiate is not supported with -async.\n");
return 2;
}
if (config->implicit_handshake) {
fprintf(stderr, "-renegotiate is not supported with -implicit-handshake.\n");
return 2;
}
SSL_renegotiate(ssl.get());
ret = SSL_do_handshake(ssl.get());
if (ret != 1) {
BIO_print_errors_fp(stdout);
return 2;
}
SSL_set_state(ssl.get(), SSL_ST_ACCEPT);
ret = SSL_do_handshake(ssl.get());
if (ret != 1) {
BIO_print_errors_fp(stdout);
return 2;
}
}
if (config->write_different_record_sizes) {
if (config->is_dtls) {
fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
return 6;
}
// This mode writes a number of different record sizes in an attempt to
// trip up the CBC record splitting code.
uint8_t buf[32769];
memset(buf, 0x42, sizeof(buf));
static const size_t kRecordSizes[] = {
0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
for (size_t i = 0; i < sizeof(kRecordSizes) / sizeof(kRecordSizes[0]);
i++) {
int w;
const size_t len = kRecordSizes[i];
size_t off = 0;
if (len > sizeof(buf)) {
fprintf(stderr, "Bad kRecordSizes value.\n");
return 5;
}
do {
w = SSL_write(ssl.get(), buf + off, len - off);
if (w > 0) {
off += (size_t) w;
}
} while ((config->async && RetryAsync(ssl.get(), w, async, &clock_delta)) ||
(w > 0 && off < len));
if (w < 0 || off != len) {
BIO_print_errors_fp(stdout);
return 4;
}
}
} else {
if (config->shim_writes_first) {
int w;
do {
w = SSL_write(ssl.get(), "hello", 5);
} while (config->async && RetryAsync(ssl.get(), w, async, &clock_delta));
}
for (;;) {
uint8_t buf[512];
int n;
do {
n = SSL_read(ssl.get(), buf, sizeof(buf));
} while (config->async && RetryAsync(ssl.get(), n, async, &clock_delta));
int err = SSL_get_error(ssl.get(), n);
if (err == SSL_ERROR_ZERO_RETURN ||
(n == 0 && err == SSL_ERROR_SYSCALL)) {
if (n != 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return 3;
}
// Accept shutdowns with or without close_notify.
// TODO(davidben): Write tests which distinguish these two cases.
break;
} else if (err != SSL_ERROR_NONE) {
if (n > 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return 3;
}
BIO_print_errors_fp(stdout);
return 3;
}
// Successfully read data.
if (n <= 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return 3;
}
for (int i = 0; i < n; i++) {
buf[i] ^= 0xff;
}
int w;
do {
w = SSL_write(ssl.get(), buf, n);
} while (config->async && RetryAsync(ssl.get(), w, async, &clock_delta));
if (w != n) {
BIO_print_errors_fp(stdout);
return 4;
}
}
}
if (out_session) {
out_session->reset(SSL_get1_session(ssl.get()));
}
SSL_shutdown(ssl.get());
return 0;
}
int main(int argc, char **argv) {
#if !defined(OPENSSL_WINDOWS)
signal(SIGPIPE, SIG_IGN);
#endif
if (!SSL_library_init()) {
return 1;
}
g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
g_clock_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree);
if (g_config_index < 0 || g_clock_index < 0 || g_state_index < 0) {
return 1;
}
TestConfig config;
if (!ParseConfig(argc - 1, argv + 1, &config)) {
return Usage(argv[0]);
}
ScopedSSL_CTX ssl_ctx = SetupCtx(&config);
if (!ssl_ctx) {
BIO_print_errors_fp(stdout);
return 1;
}
ScopedSSL_SESSION session;
int ret = DoExchange(&session, ssl_ctx.get(), &config, false /* is_resume */,
3 /* fd */, NULL /* session */);
if (ret != 0) {
return ret;
}
if (config.resume) {
ret = DoExchange(NULL, ssl_ctx.get(), &config, true /* is_resume */,
4 /* fd */, session.get());
if (ret != 0) {
return ret;
}
}
return 0;
}