boringssl/ssl/test
Adam Langley 764ab9802e Support and test P-224 certificates.
Previously we only needed to be able to serve P-224 certificates, but
now we anticipate a need to be able to connect and validate them also.
Since this requires advertising support for P-224 in the handshake, we
need to support P-224 ECDHE too.

P-224 support is disabled by default and so clients need to both set the
enabled curves explicitly and set a maximum version of TLS 1.2.

Change-Id: Idc69580f47334e0912eb431a0db0e78ee2eb5bbe
Reviewed-on: https://boringssl-review.googlesource.com/14225
Reviewed-by: Adam Langley <alangley@gmail.com>
Commit-Queue: Adam Langley <alangley@gmail.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2017-03-29 17:50:36 +00:00
..
runner Support and test P-224 certificates. 2017-03-29 17:50:36 +00:00
async_bio.cc Work around language and compiler bug in memcpy, etc. 2016-12-21 20:34:47 +00:00
async_bio.h Replace Scoped* heap types with bssl::UniquePtr. 2016-09-01 22:22:54 +00:00
bssl_shim.cc Support and test P-224 certificates. 2017-03-29 17:50:36 +00:00
CMakeLists.txt
packeted_bio.cc Remove support for blocking DTLS timeout handling. 2017-03-01 19:59:28 +00:00
packeted_bio.h Remove support for blocking DTLS timeout handling. 2017-03-01 19:59:28 +00:00
PORTING.md Document that malloc tests require a longer timeout. 2016-09-30 19:13:05 +00:00
README.md Adding PORTING.md for instructions on how to port the test runner 2016-08-16 17:53:28 +00:00
test_config.cc Test the behavior of running SSL_do_handshake twice in a row. 2017-03-27 18:30:44 +00:00
test_config.h Test the behavior of running SSL_do_handshake twice in a row. 2017-03-27 18:30:44 +00:00

BoringSSL SSL Tests

This directory contains BoringSSL's protocol-level test suite.

Testing a TLS implementation can be difficult. We need to produce invalid but sufficiently correct handshakes to get our implementation close to its edge cases. TLS's cryptographic steps mean we cannot use a transcript and effectively need a TLS implementation on the other end. But we do not wish to litter BoringSSL with options for bugs to test against.

Instead, we use a fork of the Go crypto/tls package, heavily patched with configurable bugs. This code, along with a test suite and harness written in Go, lives in the runner directory. The harness runs BoringSSL via a C/C++ shim binary which lives in this directory. All communication with the shim binary occurs with command-line flags, sockets, and standard I/O.

This strategy also ensures we always test against a second implementation. All features should be implemented twice, once in C for BoringSSL and once in Go for testing. If possible, the Go code should be suitable for potentially upstreaming. However, sometimes test code has different needs. For example, our test DTLS code enforces strict ordering on sequence numbers and has controlled packet drop simulation.

To run the tests manually, run go test from the runner directory. It takes command-line flags found at the top of runner/runner.go. The -help option also works after using go test -c to make a runner.test binary first.

If adding a new test, these files may be a good starting point:

  • runner/runner.go: the test harness and all the individual tests.
  • runner/common.go: contains the Config and ProtocolBugs struct which control the Go TLS implementation's behavior.
  • test_config.h, test_config.cc: the command-line flags which control the shim's behavior.
  • bssl_shim.cc: the shim binary itself.

For porting the test suite to a different implementation see PORTING.md.