boringssl/ssl/test/bssl_shim.cc
David Benjamin ff3a1498da Ensure runner notices post-main stderr output.
If LeakSanitizer fires something on a test that's expected to fail, runner will
swallow it. Have stderr output always end in a "--- DONE ---" marker and treat
all output following that as a test failure.

Change-Id: Ia8fd9dfcaf48dd23972ab8f906d240bcb6badfe2
Reviewed-on: https://boringssl-review.googlesource.com/7281
Reviewed-by: Adam Langley <agl@google.com>
2016-03-02 15:37:45 +00:00

1549 lines
48 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#if !defined(__STDC_FORMAT_MACROS)
#define __STDC_FORMAT_MACROS
#endif
#include <openssl/base.h>
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <unistd.h>
#else
#include <io.h>
#pragma warning(push, 3)
#include <winsock2.h>
#include <ws2tcpip.h>
#pragma warning(pop)
#pragma comment(lib, "Ws2_32.lib")
#endif
#include <inttypes.h>
#include <string.h>
#include <openssl/bio.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/cipher.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/hmac.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include <memory>
#include <string>
#include <vector>
#include "../../crypto/test/scoped_types.h"
#include "async_bio.h"
#include "packeted_bio.h"
#include "scoped_types.h"
#include "test_config.h"
#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) {
return close(sock);
}
static void PrintSocketError(const char *func) {
perror(func);
}
#else
static void PrintSocketError(const char *func) {
fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif
static int Usage(const char *program) {
fprintf(stderr, "Usage: %s [flags...]\n", program);
return 1;
}
struct TestState {
TestState() {
// MSVC cannot initialize these inline.
memset(&clock, 0, sizeof(clock));
memset(&clock_delta, 0, sizeof(clock_delta));
}
// async_bio is async BIO which pauses reads and writes.
BIO *async_bio = nullptr;
// clock is the current time for the SSL connection.
timeval clock;
// clock_delta is how far the clock advanced in the most recent failed
// |BIO_read|.
timeval clock_delta;
ScopedEVP_PKEY channel_id;
bool cert_ready = false;
ScopedSSL_SESSION session;
ScopedSSL_SESSION pending_session;
bool early_callback_called = false;
bool handshake_done = false;
// private_key is the underlying private key used when testing custom keys.
ScopedEVP_PKEY private_key;
std::vector<uint8_t> private_key_result;
// private_key_retries is the number of times an asynchronous private key
// operation has been retried.
unsigned private_key_retries = 0;
bool got_new_session = false;
};
static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int index, long argl, void *argp) {
delete ((TestState *)ptr);
}
static int g_config_index = 0;
static int g_state_index = 0;
static bool SetConfigPtr(SSL *ssl, const TestConfig *config) {
return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
}
static const TestConfig *GetConfigPtr(const SSL *ssl) {
return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
}
static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> state) {
// |SSL_set_ex_data| takes ownership of |state| only on success.
if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) {
state.release();
return true;
}
return false;
}
static TestState *GetTestState(const SSL *ssl) {
return (TestState *)SSL_get_ex_data(ssl, g_state_index);
}
static ScopedEVP_PKEY LoadPrivateKey(const std::string &file) {
ScopedBIO bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
ScopedEVP_PKEY pkey(PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
return pkey;
}
static int AsyncPrivateKeyType(SSL *ssl) {
return EVP_PKEY_id(GetTestState(ssl)->private_key.get());
}
static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) {
return EVP_PKEY_size(GetTestState(ssl)->private_key.get());
}
static ssl_private_key_result_t AsyncPrivateKeySign(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
const EVP_MD *md, const uint8_t *in, size_t in_len) {
TestState *test_state = GetTestState(ssl);
if (!test_state->private_key_result.empty()) {
fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n");
abort();
}
ScopedEVP_PKEY_CTX ctx(EVP_PKEY_CTX_new(test_state->private_key.get(),
nullptr));
if (!ctx) {
return ssl_private_key_failure;
}
// Write the signature into |test_state|.
size_t len = 0;
if (!EVP_PKEY_sign_init(ctx.get()) ||
!EVP_PKEY_CTX_set_signature_md(ctx.get(), md) ||
!EVP_PKEY_sign(ctx.get(), nullptr, &len, in, in_len)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(len);
if (!EVP_PKEY_sign(ctx.get(), test_state->private_key_result.data(), &len, in,
in_len)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(len);
// The signature will be released asynchronously in
// |AsyncPrivateKeySignComplete|.
return ssl_private_key_retry;
}
static ssl_private_key_result_t AsyncPrivateKeySignComplete(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) {
TestState *test_state = GetTestState(ssl);
if (test_state->private_key_result.empty()) {
fprintf(stderr,
"AsyncPrivateKeySignComplete called without operation pending.\n");
abort();
}
if (test_state->private_key_retries < 2) {
// Only return the signature on the second attempt, to test both incomplete
// |sign| and |sign_complete|.
return ssl_private_key_retry;
}
if (max_out < test_state->private_key_result.size()) {
fprintf(stderr, "Output buffer too small.\n");
return ssl_private_key_failure;
}
memcpy(out, test_state->private_key_result.data(),
test_state->private_key_result.size());
*out_len = test_state->private_key_result.size();
test_state->private_key_result.clear();
test_state->private_key_retries = 0;
return ssl_private_key_success;
}
static ssl_private_key_result_t AsyncPrivateKeyDecrypt(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
const uint8_t *in, size_t in_len) {
TestState *test_state = GetTestState(ssl);
if (!test_state->private_key_result.empty()) {
fprintf(stderr,
"AsyncPrivateKeyDecrypt called with operation pending.\n");
abort();
}
RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get());
if (rsa == NULL) {
fprintf(stderr,
"AsyncPrivateKeyDecrypt called with incorrect key type.\n");
abort();
}
test_state->private_key_result.resize(RSA_size(rsa));
if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(),
RSA_size(rsa), in, in_len, RSA_NO_PADDING)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(*out_len);
// The decryption will be released asynchronously in
// |AsyncPrivateKeyDecryptComplete|.
return ssl_private_key_retry;
}
static ssl_private_key_result_t AsyncPrivateKeyDecryptComplete(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) {
TestState *test_state = GetTestState(ssl);
if (test_state->private_key_result.empty()) {
fprintf(stderr,
"AsyncPrivateKeyDecryptComplete called without operation "
"pending.\n");
abort();
}
if (test_state->private_key_retries < 2) {
// Only return the decryption on the second attempt, to test both incomplete
// |decrypt| and |decrypt_complete|.
return ssl_private_key_retry;
}
if (max_out < test_state->private_key_result.size()) {
fprintf(stderr, "Output buffer too small.\n");
return ssl_private_key_failure;
}
memcpy(out, test_state->private_key_result.data(),
test_state->private_key_result.size());
*out_len = test_state->private_key_result.size();
test_state->private_key_result.clear();
test_state->private_key_retries = 0;
return ssl_private_key_success;
}
static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = {
AsyncPrivateKeyType,
AsyncPrivateKeyMaxSignatureLen,
AsyncPrivateKeySign,
AsyncPrivateKeySignComplete,
AsyncPrivateKeyDecrypt,
AsyncPrivateKeyDecryptComplete
};
template<typename T>
struct Free {
void operator()(T *buf) {
free(buf);
}
};
static bool InstallCertificate(SSL *ssl) {
const TestConfig *config = GetConfigPtr(ssl);
TestState *test_state = GetTestState(ssl);
if (!config->digest_prefs.empty()) {
std::unique_ptr<char, Free<char>> digest_prefs(
strdup(config->digest_prefs.c_str()));
std::vector<int> digest_list;
for (;;) {
char *token =
strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ",");
if (token == nullptr) {
break;
}
digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token)));
}
if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(),
digest_list.size())) {
return false;
}
}
if (!config->key_file.empty()) {
if (config->async) {
test_state->private_key = LoadPrivateKey(config->key_file.c_str());
if (!test_state->private_key) {
return false;
}
SSL_set_private_key_method(ssl, &g_async_private_key_method);
} else if (!SSL_use_PrivateKey_file(ssl, config->key_file.c_str(),
SSL_FILETYPE_PEM)) {
return false;
}
}
if (!config->cert_file.empty() &&
!SSL_use_certificate_file(ssl, config->cert_file.c_str(),
SSL_FILETYPE_PEM)) {
return false;
}
if (!config->ocsp_response.empty() &&
!SSL_CTX_set_ocsp_response(ssl->ctx,
(const uint8_t *)config->ocsp_response.data(),
config->ocsp_response.size())) {
return false;
}
return true;
}
static int SelectCertificateCallback(const struct ssl_early_callback_ctx *ctx) {
const TestConfig *config = GetConfigPtr(ctx->ssl);
GetTestState(ctx->ssl)->early_callback_called = true;
if (!config->expected_server_name.empty()) {
const uint8_t *extension_data;
size_t extension_len;
CBS extension, server_name_list, host_name;
uint8_t name_type;
if (!SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name,
&extension_data,
&extension_len)) {
fprintf(stderr, "Could not find server_name extension.\n");
return -1;
}
CBS_init(&extension, extension_data, extension_len);
if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
CBS_len(&extension) != 0 ||
!CBS_get_u8(&server_name_list, &name_type) ||
name_type != TLSEXT_NAMETYPE_host_name ||
!CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
CBS_len(&server_name_list) != 0) {
fprintf(stderr, "Could not decode server_name extension.\n");
return -1;
}
if (!CBS_mem_equal(&host_name,
(const uint8_t*)config->expected_server_name.data(),
config->expected_server_name.size())) {
fprintf(stderr, "Server name mismatch.\n");
}
}
if (config->fail_early_callback) {
return -1;
}
// Install the certificate in the early callback.
if (config->use_early_callback) {
if (config->async) {
// Install the certificate asynchronously.
return 0;
}
if (!InstallCertificate(ctx->ssl)) {
return -1;
}
}
return 1;
}
static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) {
SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx,
SSL_get_ex_data_X509_STORE_CTX_idx());
const TestConfig *config = GetConfigPtr(ssl);
if (!config->expected_ocsp_response.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_ocsp_response(ssl, &data, &len);
if (len == 0) {
fprintf(stderr, "OCSP response not available in verify callback\n");
return 0;
}
}
return 1;
}
static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) {
store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION;
return 0;
}
static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
unsigned int *out_len, void *arg) {
const TestConfig *config = GetConfigPtr(ssl);
if (config->advertise_npn.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
*out = (const uint8_t*)config->advertise_npn.data();
*out_len = config->advertise_npn.size();
return SSL_TLSEXT_ERR_OK;
}
static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
const TestConfig *config = GetConfigPtr(ssl);
if (config->select_next_proto.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
*out = (uint8_t*)config->select_next_proto.data();
*outlen = config->select_next_proto.size();
return SSL_TLSEXT_ERR_OK;
}
static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
const TestConfig *config = GetConfigPtr(ssl);
if (config->select_alpn.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
if (!config->expected_advertised_alpn.empty() &&
(config->expected_advertised_alpn.size() != inlen ||
memcmp(config->expected_advertised_alpn.data(),
in, inlen) != 0)) {
fprintf(stderr, "bad ALPN select callback inputs\n");
exit(1);
}
*out = (const uint8_t*)config->select_alpn.data();
*outlen = config->select_alpn.size();
return SSL_TLSEXT_ERR_OK;
}
static unsigned PskClientCallback(SSL *ssl, const char *hint,
char *out_identity,
unsigned max_identity_len,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetConfigPtr(ssl);
if (strcmp(hint ? hint : "", config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Server PSK hint did not match.\n");
return 0;
}
// Account for the trailing '\0' for the identity.
if (config->psk_identity.size() >= max_identity_len ||
config->psk.size() > max_psk_len) {
fprintf(stderr, "PSK buffers too small\n");
return 0;
}
BUF_strlcpy(out_identity, config->psk_identity.c_str(),
max_identity_len);
memcpy(out_psk, config->psk.data(), config->psk.size());
return config->psk.size();
}
static unsigned PskServerCallback(SSL *ssl, const char *identity,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetConfigPtr(ssl);
if (strcmp(identity, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Client PSK identity did not match.\n");
return 0;
}
if (config->psk.size() > max_psk_len) {
fprintf(stderr, "PSK buffers too small\n");
return 0;
}
memcpy(out_psk, config->psk.data(), config->psk.size());
return config->psk.size();
}
static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
*out_clock = GetTestState(ssl)->clock;
}
static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) {
*out_pkey = GetTestState(ssl)->channel_id.release();
}
static int CertCallback(SSL *ssl, void *arg) {
if (!GetTestState(ssl)->cert_ready) {
return -1;
}
if (!InstallCertificate(ssl)) {
return 0;
}
return 1;
}
static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len,
int *copy) {
TestState *async_state = GetTestState(ssl);
if (async_state->session) {
*copy = 0;
return async_state->session.release();
} else if (async_state->pending_session) {
return SSL_magic_pending_session_ptr();
} else {
return NULL;
}
}
static int DDoSCallback(const struct ssl_early_callback_ctx *early_context) {
const TestConfig *config = GetConfigPtr(early_context->ssl);
static int callback_num = 0;
callback_num++;
if (config->fail_ddos_callback ||
(config->fail_second_ddos_callback && callback_num == 2)) {
return 0;
}
return 1;
}
static void InfoCallback(const SSL *ssl, int type, int val) {
if (type == SSL_CB_HANDSHAKE_DONE) {
if (GetConfigPtr(ssl)->handshake_never_done) {
fprintf(stderr, "handshake completed\n");
// Abort before any expected error code is printed, to ensure the overall
// test fails.
abort();
}
GetTestState(ssl)->handshake_done = true;
}
}
static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
GetTestState(ssl)->got_new_session = true;
// BoringSSL passes a reference to |session|.
SSL_SESSION_free(session);
return 1;
}
static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
int encrypt) {
// This is just test code, so use the all-zeros key.
static const uint8_t kZeros[16] = {0};
if (encrypt) {
memcpy(key_name, kZeros, sizeof(kZeros));
RAND_bytes(iv, 16);
} else if (memcmp(key_name, kZeros, 16) != 0) {
return 0;
}
if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
!EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
return -1;
}
if (!encrypt) {
return GetConfigPtr(ssl)->renew_ticket ? 2 : 1;
}
return 1;
}
// kCustomExtensionValue is the extension value that the custom extension
// callbacks will add.
static const uint16_t kCustomExtensionValue = 1234;
static void *const kCustomExtensionAddArg =
reinterpret_cast<void *>(kCustomExtensionValue);
static void *const kCustomExtensionParseArg =
reinterpret_cast<void *>(kCustomExtensionValue + 1);
static const char kCustomExtensionContents[] = "custom extension";
static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value,
const uint8_t **out, size_t *out_len,
int *out_alert_value, void *add_arg) {
if (extension_value != kCustomExtensionValue ||
add_arg != kCustomExtensionAddArg) {
abort();
}
if (GetConfigPtr(ssl)->custom_extension_skip) {
return 0;
}
if (GetConfigPtr(ssl)->custom_extension_fail_add) {
return -1;
}
*out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents);
*out_len = sizeof(kCustomExtensionContents) - 1;
return 1;
}
static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value,
const uint8_t *out, void *add_arg) {
if (extension_value != kCustomExtensionValue ||
add_arg != kCustomExtensionAddArg ||
out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) {
abort();
}
}
static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value,
const uint8_t *contents,
size_t contents_len,
int *out_alert_value, void *parse_arg) {
if (extension_value != kCustomExtensionValue ||
parse_arg != kCustomExtensionParseArg) {
abort();
}
if (contents_len != sizeof(kCustomExtensionContents) - 1 ||
memcmp(contents, kCustomExtensionContents, contents_len) != 0) {
*out_alert_value = SSL_AD_DECODE_ERROR;
return 0;
}
return 1;
}
// Connect returns a new socket connected to localhost on |port| or -1 on
// error.
static int Connect(uint16_t port) {
int sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1) {
PrintSocketError("socket");
return -1;
}
int nodelay = 1;
if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) {
PrintSocketError("setsockopt");
closesocket(sock);
return -1;
}
sockaddr_in sin;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(port);
if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
PrintSocketError("inet_pton");
closesocket(sock);
return -1;
}
if (connect(sock, reinterpret_cast<const sockaddr*>(&sin),
sizeof(sin)) != 0) {
PrintSocketError("connect");
closesocket(sock);
return -1;
}
return sock;
}
class SocketCloser {
public:
explicit SocketCloser(int sock) : sock_(sock) {}
~SocketCloser() {
// Half-close and drain the socket before releasing it. This seems to be
// necessary for graceful shutdown on Windows. It will also avoid write
// failures in the test runner.
#if defined(OPENSSL_WINDOWS)
shutdown(sock_, SD_SEND);
#else
shutdown(sock_, SHUT_WR);
#endif
while (true) {
char buf[1024];
if (recv(sock_, buf, sizeof(buf), 0) <= 0) {
break;
}
}
closesocket(sock_);
}
private:
const int sock_;
};
static ScopedSSL_CTX SetupCtx(const TestConfig *config) {
ScopedSSL_CTX ssl_ctx(SSL_CTX_new(
config->is_dtls ? DTLS_method() : TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
std::string cipher_list = "ALL";
if (!config->cipher.empty()) {
cipher_list = config->cipher;
SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
}
if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), cipher_list.c_str())) {
return nullptr;
}
if (!config->cipher_tls10.empty() &&
!SSL_CTX_set_cipher_list_tls10(ssl_ctx.get(),
config->cipher_tls10.c_str())) {
return nullptr;
}
if (!config->cipher_tls11.empty() &&
!SSL_CTX_set_cipher_list_tls11(ssl_ctx.get(),
config->cipher_tls11.c_str())) {
return nullptr;
}
ScopedDH dh(DH_get_2048_256(NULL));
if (config->use_sparse_dh_prime) {
// This prime number is 2^1024 + 643 a value just above a power of two.
// Because of its form, values modulo it are essentially certain to be one
// byte shorter. This is used to test padding of these values.
if (BN_hex2bn(
&dh->p,
"1000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000028"
"3") == 0 ||
!BN_set_word(dh->g, 2)) {
return nullptr;
}
BN_free(dh->q);
dh->q = NULL;
dh->priv_length = 0;
}
if (!dh || !SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
return nullptr;
}
if (config->async && config->is_server) {
// Disable the internal session cache. To test asynchronous session lookup,
// we use an external session cache.
SSL_CTX_set_session_cache_mode(
ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL);
SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback);
} else {
SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);
}
SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback);
SSL_CTX_set_next_protos_advertised_cb(
ssl_ctx.get(), NextProtosAdvertisedCallback, NULL);
if (!config->select_next_proto.empty()) {
SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
NULL);
}
if (!config->select_alpn.empty()) {
SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
}
SSL_CTX_enable_tls_channel_id(ssl_ctx.get());
SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback);
ssl_ctx->current_time_cb = CurrentTimeCallback;
SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback);
SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback);
if (config->use_ticket_callback) {
SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback);
}
if (config->enable_client_custom_extension &&
!SSL_CTX_add_client_custom_ext(
ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
CustomExtensionFreeCallback, kCustomExtensionAddArg,
CustomExtensionParseCallback, kCustomExtensionParseArg)) {
return nullptr;
}
if (config->enable_server_custom_extension &&
!SSL_CTX_add_server_custom_ext(
ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
CustomExtensionFreeCallback, kCustomExtensionAddArg,
CustomExtensionParseCallback, kCustomExtensionParseArg)) {
return nullptr;
}
if (config->verify_fail) {
SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL);
} else {
SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL);
}
if (!config->signed_cert_timestamps.empty() &&
!SSL_CTX_set_signed_cert_timestamp_list(
ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(),
config->signed_cert_timestamps.size())) {
return nullptr;
}
return ssl_ctx;
}
// RetryAsync is called after a failed operation on |ssl| with return code
// |ret|. If the operation should be retried, it simulates one asynchronous
// event and returns true. Otherwise it returns false.
static bool RetryAsync(SSL *ssl, int ret) {
// No error; don't retry.
if (ret >= 0) {
return false;
}
const TestConfig *config = GetConfigPtr(ssl);
TestState *test_state = GetTestState(ssl);
if (test_state->clock_delta.tv_usec != 0 ||
test_state->clock_delta.tv_sec != 0) {
// Process the timeout and retry.
test_state->clock.tv_usec += test_state->clock_delta.tv_usec;
test_state->clock.tv_sec += test_state->clock.tv_usec / 1000000;
test_state->clock.tv_usec %= 1000000;
test_state->clock.tv_sec += test_state->clock_delta.tv_sec;
memset(&test_state->clock_delta, 0, sizeof(test_state->clock_delta));
// The DTLS retransmit logic silently ignores write failures. So the test
// may progress, allow writes through synchronously.
if (config->async) {
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
}
int timeout_ret = DTLSv1_handle_timeout(ssl);
if (config->async) {
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
}
if (timeout_ret < 0) {
fprintf(stderr, "Error retransmitting.\n");
return false;
}
return true;
}
// See if we needed to read or write more. If so, allow one byte through on
// the appropriate end to maximally stress the state machine.
switch (SSL_get_error(ssl, ret)) {
case SSL_ERROR_WANT_READ:
AsyncBioAllowRead(test_state->async_bio, 1);
return true;
case SSL_ERROR_WANT_WRITE:
AsyncBioAllowWrite(test_state->async_bio, 1);
return true;
case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: {
ScopedEVP_PKEY pkey = LoadPrivateKey(GetConfigPtr(ssl)->send_channel_id);
if (!pkey) {
return false;
}
test_state->channel_id = std::move(pkey);
return true;
}
case SSL_ERROR_WANT_X509_LOOKUP:
test_state->cert_ready = true;
return true;
case SSL_ERROR_PENDING_SESSION:
test_state->session = std::move(test_state->pending_session);
return true;
case SSL_ERROR_PENDING_CERTIFICATE:
// The handshake will resume without a second call to the early callback.
return InstallCertificate(ssl);
case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
test_state->private_key_retries++;
return true;
default:
return false;
}
}
// DoRead reads from |ssl|, resolving any asynchronous operations. It returns
// the result value of the final |SSL_read| call.
static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
const TestConfig *config = GetConfigPtr(ssl);
TestState *test_state = GetTestState(ssl);
int ret;
do {
if (config->async) {
// The DTLS retransmit logic silently ignores write failures. So the test
// may progress, allow writes through synchronously. |SSL_read| may
// trigger a retransmit, so disconnect the write quota.
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
}
ret = SSL_read(ssl, out, max_out);
if (config->async) {
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
}
} while (config->async && RetryAsync(ssl, ret));
return ret;
}
// WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
// operations. It returns the result of the final |SSL_write| call.
static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
const TestConfig *config = GetConfigPtr(ssl);
int ret;
do {
ret = SSL_write(ssl, in, in_len);
if (ret > 0) {
in += ret;
in_len -= ret;
}
} while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0));
return ret;
}
// DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
// returns the result of the final |SSL_shutdown| call.
static int DoShutdown(SSL *ssl) {
const TestConfig *config = GetConfigPtr(ssl);
int ret;
do {
ret = SSL_shutdown(ssl);
} while (config->async && RetryAsync(ssl, ret));
return ret;
}
// CheckHandshakeProperties checks, immediately after |ssl| completes its
// initial handshake (or False Starts), whether all the properties are
// consistent with the test configuration and invariants.
static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
const TestConfig *config = GetConfigPtr(ssl);
if (SSL_get_current_cipher(ssl) == nullptr) {
fprintf(stderr, "null cipher after handshake\n");
return false;
}
if (is_resume &&
(!!SSL_session_reused(ssl) == config->expect_session_miss)) {
fprintf(stderr, "session was%s reused\n",
SSL_session_reused(ssl) ? "" : " not");
return false;
}
bool expect_handshake_done = is_resume || !config->false_start;
if (expect_handshake_done != GetTestState(ssl)->handshake_done) {
fprintf(stderr, "handshake was%s completed\n",
GetTestState(ssl)->handshake_done ? "" : " not");
return false;
}
if (expect_handshake_done && !config->is_server) {
bool expect_new_session =
!config->expect_no_session &&
(!SSL_session_reused(ssl) || config->expect_ticket_renewal);
if (expect_new_session != GetTestState(ssl)->got_new_session) {
fprintf(stderr,
"new session was%s cached, but we expected the opposite\n",
GetTestState(ssl)->got_new_session ? "" : " not");
return false;
}
}
if (config->is_server && !GetTestState(ssl)->early_callback_called) {
fprintf(stderr, "early callback not called\n");
return false;
}
if (!config->expected_server_name.empty()) {
const char *server_name =
SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (server_name != config->expected_server_name) {
fprintf(stderr, "servername mismatch (got %s; want %s)\n",
server_name, config->expected_server_name.c_str());
return false;
}
}
if (!config->expected_certificate_types.empty()) {
const uint8_t *certificate_types;
size_t certificate_types_len =
SSL_get0_certificate_types(ssl, &certificate_types);
if (certificate_types_len != config->expected_certificate_types.size() ||
memcmp(certificate_types,
config->expected_certificate_types.data(),
certificate_types_len) != 0) {
fprintf(stderr, "certificate types mismatch\n");
return false;
}
}
if (!config->expected_next_proto.empty()) {
const uint8_t *next_proto;
unsigned next_proto_len;
SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len);
if (next_proto_len != config->expected_next_proto.size() ||
memcmp(next_proto, config->expected_next_proto.data(),
next_proto_len) != 0) {
fprintf(stderr, "negotiated next proto mismatch\n");
return false;
}
}
if (!config->expected_alpn.empty()) {
const uint8_t *alpn_proto;
unsigned alpn_proto_len;
SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len);
if (alpn_proto_len != config->expected_alpn.size() ||
memcmp(alpn_proto, config->expected_alpn.data(),
alpn_proto_len) != 0) {
fprintf(stderr, "negotiated alpn proto mismatch\n");
return false;
}
}
if (!config->expected_channel_id.empty()) {
uint8_t channel_id[64];
if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) {
fprintf(stderr, "no channel id negotiated\n");
return false;
}
if (config->expected_channel_id.size() != 64 ||
memcmp(config->expected_channel_id.data(),
channel_id, 64) != 0) {
fprintf(stderr, "channel id mismatch\n");
return false;
}
}
if (config->expect_extended_master_secret) {
if (!ssl->session->extended_master_secret) {
fprintf(stderr, "No EMS for session when expected");
return false;
}
}
if (!config->expected_ocsp_response.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_ocsp_response(ssl, &data, &len);
if (config->expected_ocsp_response.size() != len ||
memcmp(config->expected_ocsp_response.data(), data, len) != 0) {
fprintf(stderr, "OCSP response mismatch\n");
return false;
}
}
if (!config->expected_signed_cert_timestamps.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_signed_cert_timestamp_list(ssl, &data, &len);
if (config->expected_signed_cert_timestamps.size() != len ||
memcmp(config->expected_signed_cert_timestamps.data(),
data, len) != 0) {
fprintf(stderr, "SCT list mismatch\n");
return false;
}
}
if (config->expect_verify_result) {
int expected_verify_result = config->verify_fail ?
X509_V_ERR_APPLICATION_VERIFICATION :
X509_V_OK;
if (SSL_get_verify_result(ssl) != expected_verify_result) {
fprintf(stderr, "Wrong certificate verification result\n");
return false;
}
}
if (config->expect_server_key_exchange_hash != 0 &&
config->expect_server_key_exchange_hash !=
SSL_get_server_key_exchange_hash(ssl)) {
fprintf(stderr, "ServerKeyExchange hash was %d, wanted %d.\n",
SSL_get_server_key_exchange_hash(ssl),
config->expect_server_key_exchange_hash);
return false;
}
if (config->expect_key_exchange_info != 0) {
uint32_t info = SSL_SESSION_get_key_exchange_info(SSL_get_session(ssl));
if (static_cast<uint32_t>(config->expect_key_exchange_info) != info) {
fprintf(stderr, "key_exchange_info was %" PRIu32 ", wanted %" PRIu32 "\n",
info, static_cast<uint32_t>(config->expect_key_exchange_info));
return false;
}
}
if (!config->is_server) {
/* Clients should expect a peer certificate chain iff this was not a PSK
* cipher suite. */
if (config->psk.empty()) {
if (SSL_get_peer_cert_chain(ssl) == nullptr) {
fprintf(stderr, "Missing peer certificate chain!\n");
return false;
}
} else if (SSL_get_peer_cert_chain(ssl) != nullptr) {
fprintf(stderr, "Unexpected peer certificate chain!\n");
return false;
}
}
return true;
}
// DoExchange runs a test SSL exchange against the peer. On success, it returns
// true and sets |*out_session| to the negotiated SSL session. If the test is a
// resumption attempt, |is_resume| is true and |session| is the session from the
// previous exchange.
static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
const TestConfig *config, bool is_resume,
SSL_SESSION *session) {
ScopedSSL ssl(SSL_new(ssl_ctx));
if (!ssl) {
return false;
}
if (!SetConfigPtr(ssl.get(), config) ||
!SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
return false;
}
if (config->fallback_scsv &&
!SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
return false;
}
if (!config->use_early_callback) {
if (config->async) {
// TODO(davidben): Also test |s->ctx->client_cert_cb| on the client.
SSL_set_cert_cb(ssl.get(), CertCallback, NULL);
} else if (!InstallCertificate(ssl.get())) {
return false;
}
}
if (config->require_any_client_certificate) {
SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
NULL);
}
if (config->verify_peer) {
SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL);
}
if (config->false_start) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START);
}
if (config->cbc_record_splitting) {
SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING);
}
if (config->partial_write) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
}
if (config->no_tls12) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
}
if (config->no_tls11) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
}
if (config->no_tls1) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
}
if (config->no_ssl3) {
SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3);
}
if (!config->expected_channel_id.empty()) {
SSL_enable_tls_channel_id(ssl.get());
}
if (!config->send_channel_id.empty()) {
SSL_enable_tls_channel_id(ssl.get());
if (!config->async) {
// The async case will be supplied by |ChannelIdCallback|.
ScopedEVP_PKEY pkey = LoadPrivateKey(config->send_channel_id);
if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) {
return false;
}
}
}
if (!config->host_name.empty() &&
!SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) {
return false;
}
if (!config->advertise_alpn.empty() &&
SSL_set_alpn_protos(ssl.get(),
(const uint8_t *)config->advertise_alpn.data(),
config->advertise_alpn.size()) != 0) {
return false;
}
if (!config->psk.empty()) {
SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
}
if (!config->psk_identity.empty() &&
!SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) {
return false;
}
if (!config->srtp_profiles.empty() &&
!SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) {
return false;
}
if (config->enable_ocsp_stapling &&
!SSL_enable_ocsp_stapling(ssl.get())) {
return false;
}
if (config->enable_signed_cert_timestamps &&
!SSL_enable_signed_cert_timestamps(ssl.get())) {
return false;
}
if (config->min_version != 0) {
SSL_set_min_version(ssl.get(), (uint16_t)config->min_version);
}
if (config->max_version != 0) {
SSL_set_max_version(ssl.get(), (uint16_t)config->max_version);
}
if (config->mtu != 0) {
SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
SSL_set_mtu(ssl.get(), config->mtu);
}
if (config->install_ddos_callback) {
SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback);
}
if (config->renegotiate_once) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once);
}
if (config->renegotiate_freely) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely);
}
if (config->renegotiate_ignore) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore);
}
if (!config->check_close_notify) {
SSL_set_quiet_shutdown(ssl.get(), 1);
}
if (config->disable_npn) {
SSL_set_options(ssl.get(), SSL_OP_DISABLE_NPN);
}
if (config->p384_only) {
int nid = NID_secp384r1;
if (!SSL_set1_curves(ssl.get(), &nid, 1)) {
return false;
}
}
if (config->enable_all_curves) {
static const int kAllCurves[] = {
NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_x25519,
};
if (!SSL_set1_curves(ssl.get(), kAllCurves,
sizeof(kAllCurves) / sizeof(kAllCurves[0]))) {
return false;
}
}
int sock = Connect(config->port);
if (sock == -1) {
return false;
}
SocketCloser closer(sock);
ScopedBIO bio(BIO_new_socket(sock, BIO_NOCLOSE));
if (!bio) {
return false;
}
if (config->is_dtls) {
ScopedBIO packeted =
PacketedBioCreate(&GetTestState(ssl.get())->clock_delta);
BIO_push(packeted.get(), bio.release());
bio = std::move(packeted);
}
if (config->async) {
ScopedBIO async_scoped =
config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
BIO_push(async_scoped.get(), bio.release());
GetTestState(ssl.get())->async_bio = async_scoped.get();
bio = std::move(async_scoped);
}
SSL_set_bio(ssl.get(), bio.get(), bio.get());
bio.release(); // SSL_set_bio takes ownership.
if (session != NULL) {
if (!config->is_server) {
if (SSL_set_session(ssl.get(), session) != 1) {
return false;
}
} else if (config->async) {
// The internal session cache is disabled, so install the session
// manually.
GetTestState(ssl.get())->pending_session.reset(
SSL_SESSION_up_ref(session));
}
}
if (SSL_get_current_cipher(ssl.get()) != nullptr) {
fprintf(stderr, "non-null cipher before handshake\n");
return false;
}
int ret;
if (config->implicit_handshake) {
if (config->is_server) {
SSL_set_accept_state(ssl.get());
} else {
SSL_set_connect_state(ssl.get());
}
} else {
do {
if (config->is_server) {
ret = SSL_accept(ssl.get());
} else {
ret = SSL_connect(ssl.get());
}
} while (config->async && RetryAsync(ssl.get(), ret));
if (ret != 1 ||
!CheckHandshakeProperties(ssl.get(), is_resume)) {
return false;
}
// Reset the state to assert later that the callback isn't called in
// renegotations.
GetTestState(ssl.get())->got_new_session = false;
}
if (config->export_keying_material > 0) {
std::vector<uint8_t> result(
static_cast<size_t>(config->export_keying_material));
if (!SSL_export_keying_material(
ssl.get(), result.data(), result.size(),
config->export_label.data(), config->export_label.size(),
reinterpret_cast<const uint8_t*>(config->export_context.data()),
config->export_context.size(), config->use_export_context)) {
fprintf(stderr, "failed to export keying material\n");
return false;
}
if (WriteAll(ssl.get(), result.data(), result.size()) < 0) {
return false;
}
}
if (config->tls_unique) {
uint8_t tls_unique[16];
size_t tls_unique_len;
if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len,
sizeof(tls_unique))) {
fprintf(stderr, "failed to get tls-unique\n");
return false;
}
if (tls_unique_len != 12) {
fprintf(stderr, "expected 12 bytes of tls-unique but got %u",
static_cast<unsigned>(tls_unique_len));
return false;
}
if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) {
return false;
}
}
if (config->write_different_record_sizes) {
if (config->is_dtls) {
fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
return false;
}
// This mode writes a number of different record sizes in an attempt to
// trip up the CBC record splitting code.
static const size_t kBufLen = 32769;
std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
memset(buf.get(), 0x42, kBufLen);
static const size_t kRecordSizes[] = {
0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
for (size_t i = 0; i < sizeof(kRecordSizes) / sizeof(kRecordSizes[0]);
i++) {
const size_t len = kRecordSizes[i];
if (len > kBufLen) {
fprintf(stderr, "Bad kRecordSizes value.\n");
return false;
}
if (WriteAll(ssl.get(), buf.get(), len) < 0) {
return false;
}
}
} else {
if (config->shim_writes_first) {
if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"),
5) < 0) {
return false;
}
}
if (!config->shim_shuts_down) {
for (;;) {
static const size_t kBufLen = 16384;
std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
// Read only 512 bytes at a time in TLS to ensure records may be
// returned in multiple reads.
int n = DoRead(ssl.get(), buf.get(), config->is_dtls ? kBufLen : 512);
int err = SSL_get_error(ssl.get(), n);
if (err == SSL_ERROR_ZERO_RETURN ||
(n == 0 && err == SSL_ERROR_SYSCALL)) {
if (n != 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return false;
}
// Stop on either clean or unclean shutdown.
break;
} else if (err != SSL_ERROR_NONE) {
if (n > 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return false;
}
return false;
}
// Successfully read data.
if (n <= 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return false;
}
// After a successful read, with or without False Start, the handshake
// must be complete.
if (!GetTestState(ssl.get())->handshake_done) {
fprintf(stderr, "handshake was not completed after SSL_read\n");
return false;
}
for (int i = 0; i < n; i++) {
buf[i] ^= 0xff;
}
if (WriteAll(ssl.get(), buf.get(), n) < 0) {
return false;
}
}
}
}
if (!config->is_server && !config->false_start &&
!config->implicit_handshake &&
GetTestState(ssl.get())->got_new_session) {
fprintf(stderr, "new session was established after the handshake\n");
return false;
}
if (out_session) {
out_session->reset(SSL_get1_session(ssl.get()));
}
ret = DoShutdown(ssl.get());
if (config->shim_shuts_down && config->check_close_notify) {
// We initiate shutdown, so |SSL_shutdown| will return in two stages. First
// it returns zero when our close_notify is sent, then one when the peer's
// is received.
if (ret != 0) {
fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret);
return false;
}
ret = DoShutdown(ssl.get());
}
if (ret != 1) {
fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret);
return false;
}
if (SSL_total_renegotiations(ssl.get()) !=
config->expect_total_renegotiations) {
fprintf(stderr, "Expected %d renegotiations, got %d\n",
config->expect_total_renegotiations,
SSL_total_renegotiations(ssl.get()));
return false;
}
return true;
}
class StderrDelimiter {
public:
~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
};
int main(int argc, char **argv) {
// To distinguish ASan's output from ours, add a trailing message to stderr.
// Anything following this line will be considered an error.
StderrDelimiter delimiter;
#if defined(OPENSSL_WINDOWS)
/* Initialize Winsock. */
WORD wsa_version = MAKEWORD(2, 2);
WSADATA wsa_data;
int wsa_err = WSAStartup(wsa_version, &wsa_data);
if (wsa_err != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
return 1;
}
if (wsa_data.wVersion != wsa_version) {
fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
return 1;
}
#else
signal(SIGPIPE, SIG_IGN);
#endif
CRYPTO_library_init();
g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree);
if (g_config_index < 0 || g_state_index < 0) {
return 1;
}
TestConfig config;
if (!ParseConfig(argc - 1, argv + 1, &config)) {
return Usage(argv[0]);
}
ScopedSSL_CTX ssl_ctx = SetupCtx(&config);
if (!ssl_ctx) {
ERR_print_errors_fp(stderr);
return 1;
}
ScopedSSL_SESSION session;
if (!DoExchange(&session, ssl_ctx.get(), &config, false /* is_resume */,
NULL /* session */)) {
ERR_print_errors_fp(stderr);
return 1;
}
if (config.resume &&
!DoExchange(NULL, ssl_ctx.get(), &config, true /* is_resume */,
session.get())) {
ERR_print_errors_fp(stderr);
return 1;
}
return 0;
}