remove reference impl
This commit is contained in:
parent
08d5c77d3a
commit
f2e85e88a3
@ -1,27 +0,0 @@
|
||||
all:
|
||||
@cc \
|
||||
-std=c99 -pedantic \
|
||||
-Wall -Wextra \
|
||||
-O2 -funroll-loops \
|
||||
rng.c \
|
||||
u512.s fp.s \
|
||||
mont.c \
|
||||
csidh.c \
|
||||
main.c \
|
||||
-o main
|
||||
|
||||
debug:
|
||||
cc \
|
||||
-std=c99 -pedantic \
|
||||
-Wall -Wextra \
|
||||
-g \
|
||||
rng.c \
|
||||
u512.s fp.s \
|
||||
mont.c \
|
||||
csidh.c \
|
||||
main.c \
|
||||
-o main
|
||||
|
||||
clean:
|
||||
rm -f main
|
||||
|
@ -1,54 +0,0 @@
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "u512.h"
|
||||
#include "fp.h"
|
||||
#include "mont.h"
|
||||
#include "csidh.h"
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
static __inline__ uint64_t rdtsc(void)
|
||||
{
|
||||
uint32_t hi, lo;
|
||||
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
|
||||
return lo | (uint64_t) hi << 32;
|
||||
}
|
||||
|
||||
unsigned long its = 10000;
|
||||
|
||||
int main()
|
||||
{
|
||||
clock_t t0, t1, time = 0;
|
||||
uint64_t c0, c1, cycles = 0;
|
||||
|
||||
private_key priv;
|
||||
public_key pub = base;
|
||||
|
||||
for (unsigned long i = 0; i < its; ++i) {
|
||||
|
||||
csidh_private(&priv);
|
||||
|
||||
t0 = clock();
|
||||
c0 = rdtsc();
|
||||
|
||||
/**************************************/
|
||||
assert(validate(&pub));
|
||||
action(&pub, &pub, &priv);
|
||||
/**************************************/
|
||||
|
||||
c1 = rdtsc();
|
||||
t1 = clock();
|
||||
cycles += c1 - c0;
|
||||
time += t1 - t0;
|
||||
}
|
||||
|
||||
printf("iterations: %lu\n", its);
|
||||
printf("clock cycles: %" PRIu64 "\n", (uint64_t) cycles / its);
|
||||
printf("wall-clock time: %.3lf ms\n", 1000. * time / CLOCKS_PER_SEC / its);
|
||||
}
|
||||
|
@ -1,220 +0,0 @@
|
||||
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "csidh.h"
|
||||
#include "rng.h"
|
||||
|
||||
/* specific to p, should perhaps be somewhere else */
|
||||
const unsigned primes[num_primes] = {
|
||||
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
|
||||
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
|
||||
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
|
||||
229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
|
||||
317, 331, 337, 347, 349, 353, 359, 367, 373, 587,
|
||||
};
|
||||
|
||||
const u512 four_sqrt_p = {{
|
||||
0x85e2579c786882cf, 0x4e3433657e18da95, 0x850ae5507965a0b3, 0xa15bc4e676475964,
|
||||
}};
|
||||
|
||||
|
||||
const public_key base = {0}; /* A = 0 */
|
||||
|
||||
void csidh_private(private_key *priv)
|
||||
{
|
||||
memset(&priv->e, 0, sizeof(priv->e));
|
||||
for (size_t i = 0; i < num_primes; ) {
|
||||
int8_t buf[64];
|
||||
randombytes(buf, sizeof(buf));
|
||||
for (size_t j = 0; j < sizeof(buf); ++j) {
|
||||
if (buf[j] <= max_exponent && buf[j] >= -max_exponent) {
|
||||
priv->e[i / 2] |= (buf[j] & 0xf) << i % 2 * 4;
|
||||
if (++i >= num_primes)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* compute [(p+1)/l] P for all l in our list of primes. */
|
||||
/* divide and conquer is much faster than doing it naively,
|
||||
* but uses more memory. */
|
||||
static void cofactor_multiples(proj *P, const proj *A, size_t lower, size_t upper)
|
||||
{
|
||||
assert(lower < upper);
|
||||
|
||||
if (upper - lower == 1)
|
||||
return;
|
||||
|
||||
size_t mid = lower + (upper - lower + 1) / 2;
|
||||
|
||||
u512 cl = u512_1, cu = u512_1;
|
||||
for (size_t i = lower; i < mid; ++i)
|
||||
u512_mul3_64(&cu, &cu, primes[i]);
|
||||
for (size_t i = mid; i < upper; ++i)
|
||||
u512_mul3_64(&cl, &cl, primes[i]);
|
||||
|
||||
xMUL(&P[mid], A, &P[lower], &cu);
|
||||
xMUL(&P[lower], A, &P[lower], &cl);
|
||||
|
||||
cofactor_multiples(P, A, lower, mid);
|
||||
cofactor_multiples(P, A, mid, upper);
|
||||
}
|
||||
|
||||
/* never accepts invalid keys. */
|
||||
bool validate(public_key const *in)
|
||||
{
|
||||
const proj A = {in->A, fp_1};
|
||||
|
||||
do {
|
||||
|
||||
proj P[num_primes];
|
||||
fp_random(&P->x);
|
||||
P->z = fp_1;
|
||||
|
||||
/* maximal 2-power in p+1 */
|
||||
xDBL(P, &A, P);
|
||||
xDBL(P, &A, P);
|
||||
|
||||
cofactor_multiples(P, &A, 0, num_primes);
|
||||
|
||||
u512 order = u512_1;
|
||||
|
||||
for (size_t i = num_primes - 1; i < num_primes; --i) {
|
||||
|
||||
/* we only gain information if [(p+1)/l] P is non-zero */
|
||||
if (memcmp(&P[i].z, &fp_0, sizeof(fp))) {
|
||||
|
||||
u512 tmp;
|
||||
u512_set(&tmp, primes[i]);
|
||||
xMUL(&P[i], &A, &P[i], &tmp);
|
||||
|
||||
if (memcmp(&P[i].z, &fp_0, sizeof(fp)))
|
||||
/* P does not have order dividing p+1. */
|
||||
return false;
|
||||
|
||||
u512_mul3_64(&order, &order, primes[i]);
|
||||
|
||||
if (u512_sub3(&tmp, &four_sqrt_p, &order)) /* returns borrow */
|
||||
/* order > 4 sqrt(p), hence definitely supersingular */
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
/* P didn't have big enough order to prove supersingularity. */
|
||||
} while (1);
|
||||
}
|
||||
|
||||
/* compute x^3 + Ax^2 + x */
|
||||
static void montgomery_rhs(fp *rhs, fp const *A, fp const *x)
|
||||
{
|
||||
fp tmp;
|
||||
*rhs = *x;
|
||||
fp_sq1(rhs);
|
||||
fp_mul3(&tmp, A, x);
|
||||
fp_add2(rhs, &tmp);
|
||||
fp_add2(rhs, &fp_1);
|
||||
fp_mul2(rhs, x);
|
||||
}
|
||||
|
||||
/* totally not constant-time. */
|
||||
void action(public_key *out, public_key const *in, private_key const *priv)
|
||||
{
|
||||
u512 k[2];
|
||||
u512_set(&k[0], 4); /* maximal 2-power in p+1 */
|
||||
u512_set(&k[1], 4); /* maximal 2-power in p+1 */
|
||||
|
||||
uint8_t e[2][num_primes];
|
||||
|
||||
for (size_t i = 0; i < num_primes; ++i) {
|
||||
|
||||
int8_t t = (int8_t) (priv->e[i / 2] << i % 2 * 4) >> 4;
|
||||
|
||||
if (t > 0) {
|
||||
e[0][i] = t;
|
||||
e[1][i] = 0;
|
||||
u512_mul3_64(&k[1], &k[1], primes[i]);
|
||||
}
|
||||
else if (t < 0) {
|
||||
e[1][i] = -t;
|
||||
e[0][i] = 0;
|
||||
u512_mul3_64(&k[0], &k[0], primes[i]);
|
||||
}
|
||||
else {
|
||||
e[0][i] = 0;
|
||||
e[1][i] = 0;
|
||||
u512_mul3_64(&k[0], &k[0], primes[i]);
|
||||
u512_mul3_64(&k[1], &k[1], primes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
proj A = {in->A, fp_1};
|
||||
|
||||
bool done[2] = {false, false};
|
||||
|
||||
do {
|
||||
|
||||
assert(!memcmp(&A.z, &fp_1, sizeof(fp)));
|
||||
|
||||
proj P;
|
||||
fp_random(&P.x);
|
||||
P.z = fp_1;
|
||||
|
||||
fp rhs;
|
||||
montgomery_rhs(&rhs, &A.x, &P.x);
|
||||
bool sign = !fp_issquare(&rhs);
|
||||
|
||||
if (done[sign])
|
||||
continue;
|
||||
|
||||
xMUL(&P, &A, &P, &k[sign]);
|
||||
|
||||
done[sign] = true;
|
||||
|
||||
for (size_t i = 0; i < num_primes; ++i) {
|
||||
|
||||
if (e[sign][i]) {
|
||||
|
||||
u512 cof = u512_1;
|
||||
for (size_t j = i + 1; j < num_primes; ++j)
|
||||
if (e[sign][j])
|
||||
u512_mul3_64(&cof, &cof, primes[j]);
|
||||
|
||||
proj K;
|
||||
xMUL(&K, &A, &P, &cof);
|
||||
|
||||
if (memcmp(&K.z, &fp_0, sizeof(fp))) {
|
||||
|
||||
xISOG(&A, &P, &K, primes[i]);
|
||||
|
||||
if (!--e[sign][i])
|
||||
u512_mul3_64(&k[sign], &k[sign], primes[i]);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
done[sign] &= !e[sign][i];
|
||||
}
|
||||
|
||||
fp_inv(&A.z);
|
||||
fp_mul2(&A.x, &A.z);
|
||||
A.z = fp_1;
|
||||
|
||||
} while (!(done[0] && done[1]));
|
||||
|
||||
out->A = A.x;
|
||||
}
|
||||
|
||||
/* includes public-key validation. */
|
||||
bool csidh(public_key *out, public_key const *in, private_key const *priv)
|
||||
{
|
||||
if (!validate(in)) {
|
||||
fp_random(&out->A);
|
||||
return false;
|
||||
}
|
||||
action(out, in, priv);
|
||||
return true;
|
||||
}
|
||||
|
@ -1,26 +0,0 @@
|
||||
#ifndef CSIDH_H
|
||||
#define CSIDH_H
|
||||
|
||||
#include "u512.h"
|
||||
#include "fp.h"
|
||||
#include "mont.h"
|
||||
|
||||
/* specific to p, should perhaps be somewhere else */
|
||||
#define num_primes 74
|
||||
#define max_exponent 5 /* (2*5+1)^74 is roughly 2^256 */
|
||||
|
||||
|
||||
typedef struct private_key {
|
||||
int8_t e[(num_primes + 1) / 2]; /* packed int4_t */
|
||||
} private_key;
|
||||
|
||||
typedef struct public_key {
|
||||
fp A; /* Montgomery coefficient: represents y^2 = x^3 + Ax^2 + x */
|
||||
} public_key;
|
||||
|
||||
extern const public_key base;
|
||||
|
||||
void csidh_private(private_key *priv);
|
||||
bool csidh(public_key *out, public_key const *in, private_key const *priv);
|
||||
|
||||
#endif
|
@ -1,37 +0,0 @@
|
||||
#ifndef FP_H
|
||||
#define FP_H
|
||||
|
||||
#include "u512.h"
|
||||
|
||||
/* fp is in the Montgomery domain, so interpreting that
|
||||
as an integer should never make sense.
|
||||
enable compiler warnings when mixing up u512 and fp. */
|
||||
typedef struct fp {
|
||||
u512 x;
|
||||
} fp;
|
||||
|
||||
extern const fp fp_0;
|
||||
extern const fp fp_1;
|
||||
|
||||
void fp_set(fp *x, uint64_t y);
|
||||
void fp_cswap(fp *x, fp *y, bool c);
|
||||
|
||||
void fp_enc(fp *x, u512 const *y); /* encode to Montgomery representation */
|
||||
void fp_dec(u512 *x, fp const *y); /* decode from Montgomery representation */
|
||||
|
||||
void fp_add2(fp *x, fp const *y);
|
||||
void fp_sub2(fp *x, fp const *y);
|
||||
void fp_mul2(fp *x, fp const *y);
|
||||
|
||||
void fp_add3(fp *x, fp const *y, fp const *z);
|
||||
void fp_sub3(fp *x, fp const *y, fp const *z);
|
||||
void fp_mul3(fp *x, fp const *y, fp const *z);
|
||||
|
||||
void fp_sq1(fp *x);
|
||||
void fp_sq2(fp *x, fp const *y);
|
||||
void fp_inv(fp *x);
|
||||
bool fp_issquare(fp const *x);
|
||||
|
||||
void fp_random(fp *x);
|
||||
|
||||
#endif
|
@ -1,452 +0,0 @@
|
||||
|
||||
.intel_syntax noprefix
|
||||
|
||||
.section .rodata
|
||||
|
||||
.set pbits, 511
|
||||
p:
|
||||
.quad 0x1b81b90533c6c87b, 0xc2721bf457aca835, 0x516730cc1f0b4f25, 0xa7aac6c567f35507
|
||||
.quad 0x5afbfcc69322c9cd, 0xb42d083aedc88c42, 0xfc8ab0d15e3e4c4a, 0x65b48e8f740f89bf
|
||||
|
||||
|
||||
.global fp_0
|
||||
fp_0: .quad 0, 0, 0, 0, 0, 0, 0, 0
|
||||
|
||||
.global fp_1
|
||||
fp_1: /* 2^512 mod p */
|
||||
.quad 0xc8fc8df598726f0a, 0x7b1bc81750a6af95, 0x5d319e67c1e961b4, 0xb0aa7275301955f1
|
||||
.quad 0x4a080672d9ba6c64, 0x97a5ef8a246ee77b, 0x06ea9e5d4383676a, 0x3496e2e117e0ec80
|
||||
|
||||
|
||||
/* (2^512)^2 mod p */
|
||||
.r_squared_mod_p:
|
||||
.quad 0x36905b572ffc1724, 0x67086f4525f1f27d, 0x4faf3fbfd22370ca, 0x192ea214bcc584b1
|
||||
.quad 0x5dae03ee2f5de3d0, 0x1e9248731776b371, 0xad5f166e20e4f52d, 0x4ed759aea6f3917e
|
||||
|
||||
/* -p^-1 mod 2^64 */
|
||||
.inv_min_p_mod_r:
|
||||
.quad 0x66c1301f632e294d
|
||||
|
||||
|
||||
.section .text
|
||||
|
||||
.global fp_copy
|
||||
fp_copy:
|
||||
cld
|
||||
mov rcx, 8
|
||||
rep movsq
|
||||
ret
|
||||
|
||||
.global fp_set
|
||||
fp_set:
|
||||
push rdi
|
||||
call u512_set
|
||||
pop rdi
|
||||
mov rsi, rdi
|
||||
jmp fp_enc
|
||||
|
||||
.global fp_cswap
|
||||
fp_cswap:
|
||||
movzx rax, dl
|
||||
neg rax
|
||||
.set k, 0
|
||||
.rept 8
|
||||
mov rcx, [rdi + 8*k]
|
||||
mov rdx, [rsi + 8*k]
|
||||
|
||||
mov r8, rcx
|
||||
xor r8, rdx
|
||||
and r8, rax
|
||||
|
||||
xor rcx, r8
|
||||
xor rdx, r8
|
||||
|
||||
mov [rdi + 8*k], rcx
|
||||
mov [rsi + 8*k], rdx
|
||||
|
||||
.set k, k+1
|
||||
.endr
|
||||
ret
|
||||
|
||||
.reduce_once:
|
||||
push rbp
|
||||
mov rbp, rdi
|
||||
|
||||
mov rdi, [rbp + 0]
|
||||
sub rdi, [rip + p + 0]
|
||||
mov rsi, [rbp + 8]
|
||||
sbb rsi, [rip + p + 8]
|
||||
mov rdx, [rbp + 16]
|
||||
sbb rdx, [rip + p + 16]
|
||||
mov rcx, [rbp + 24]
|
||||
sbb rcx, [rip + p + 24]
|
||||
mov r8, [rbp + 32]
|
||||
sbb r8, [rip + p + 32]
|
||||
mov r9, [rbp + 40]
|
||||
sbb r9, [rip + p + 40]
|
||||
mov r10, [rbp + 48]
|
||||
sbb r10, [rip + p + 48]
|
||||
mov r11, [rbp + 56]
|
||||
sbb r11, [rip + p + 56]
|
||||
|
||||
setnc al
|
||||
movzx rax, al
|
||||
neg rax
|
||||
|
||||
.macro cswap2, r, m
|
||||
xor \r, \m
|
||||
and \r, rax
|
||||
xor \m, \r
|
||||
.endm
|
||||
|
||||
cswap2 rdi, [rbp + 0]
|
||||
cswap2 rsi, [rbp + 8]
|
||||
cswap2 rdx, [rbp + 16]
|
||||
cswap2 rcx, [rbp + 24]
|
||||
cswap2 r8, [rbp + 32]
|
||||
cswap2 r9, [rbp + 40]
|
||||
cswap2 r10, [rbp + 48]
|
||||
cswap2 r11, [rbp + 56]
|
||||
|
||||
pop rbp
|
||||
ret
|
||||
|
||||
.global fp_add3
|
||||
fp_add3:
|
||||
push rdi
|
||||
call u512_add3
|
||||
pop rdi
|
||||
jmp .reduce_once
|
||||
|
||||
.global fp_add2
|
||||
fp_add2:
|
||||
mov rdx, rdi
|
||||
jmp fp_add3
|
||||
|
||||
.global fp_sub3
|
||||
fp_sub3:
|
||||
push rdi
|
||||
call u512_sub3
|
||||
pop rdi
|
||||
xor rsi, rsi
|
||||
xor rdx, rdx
|
||||
xor rcx, rcx
|
||||
xor r8, r8
|
||||
xor r9, r9
|
||||
xor r10, r10
|
||||
xor r11, r11
|
||||
test rax, rax
|
||||
cmovnz rax, [rip + p + 0]
|
||||
cmovnz rsi, [rip + p + 8]
|
||||
cmovnz rdx, [rip + p + 16]
|
||||
cmovnz rcx, [rip + p + 24]
|
||||
cmovnz r8, [rip + p + 32]
|
||||
cmovnz r9, [rip + p + 40]
|
||||
cmovnz r10, [rip + p + 48]
|
||||
cmovnz r11, [rip + p + 56]
|
||||
add [rdi + 0], rax
|
||||
adc [rdi + 8], rsi
|
||||
adc [rdi + 16], rdx
|
||||
adc [rdi + 24], rcx
|
||||
adc [rdi + 32], r8
|
||||
adc [rdi + 40], r9
|
||||
adc [rdi + 48], r10
|
||||
adc [rdi + 56], r11
|
||||
ret
|
||||
|
||||
.global fp_sub2
|
||||
fp_sub2:
|
||||
mov rdx, rdi
|
||||
xchg rsi, rdx
|
||||
jmp fp_sub3
|
||||
|
||||
|
||||
/* Montgomery arithmetic */
|
||||
|
||||
.global fp_enc
|
||||
fp_enc:
|
||||
lea rdx, [rip + .r_squared_mod_p]
|
||||
jmp fp_mul3
|
||||
|
||||
.global fp_dec
|
||||
fp_dec:
|
||||
lea rdx, [rip + u512_1]
|
||||
jmp fp_mul3
|
||||
|
||||
.global fp_mul3
|
||||
fp_mul3:
|
||||
push rbp
|
||||
push rbx
|
||||
push r12
|
||||
push r13
|
||||
push r14
|
||||
push r15
|
||||
|
||||
push rdi
|
||||
|
||||
mov rdi, rsi
|
||||
mov rsi, rdx
|
||||
|
||||
xor r8, r8
|
||||
xor r9, r9
|
||||
xor r10, r10
|
||||
xor r11, r11
|
||||
xor r12, r12
|
||||
xor r13, r13
|
||||
xor r14, r14
|
||||
xor r15, r15
|
||||
xor rbp, rbp
|
||||
|
||||
/* flags are already cleared */
|
||||
|
||||
.macro MULSTEP, k, r0, r1, r2, r3, r4, r5, r6, r7, r8
|
||||
|
||||
mov rdx, [rsi + 0]
|
||||
mulx rcx, rdx, [rdi + 8*\k]
|
||||
add rdx, \r0
|
||||
mulx rcx, rdx, [rip + .inv_min_p_mod_r]
|
||||
|
||||
xor rax, rax /* clear flags */
|
||||
|
||||
mulx rbx, rax, [rip + p + 0]
|
||||
adox \r0, rax
|
||||
|
||||
mulx rcx, rax, [rip + p + 8]
|
||||
adcx \r1, rbx
|
||||
adox \r1, rax
|
||||
|
||||
mulx rbx, rax, [rip + p + 16]
|
||||
adcx \r2, rcx
|
||||
adox \r2, rax
|
||||
|
||||
mulx rcx, rax, [rip + p + 24]
|
||||
adcx \r3, rbx
|
||||
adox \r3, rax
|
||||
|
||||
mulx rbx, rax, [rip + p + 32]
|
||||
adcx \r4, rcx
|
||||
adox \r4, rax
|
||||
|
||||
mulx rcx, rax, [rip + p + 40]
|
||||
adcx \r5, rbx
|
||||
adox \r5, rax
|
||||
|
||||
mulx rbx, rax, [rip + p + 48]
|
||||
adcx \r6, rcx
|
||||
adox \r6, rax
|
||||
|
||||
mulx rcx, rax, [rip + p + 56]
|
||||
adcx \r7, rbx
|
||||
adox \r7, rax
|
||||
|
||||
mov rax, 0
|
||||
adcx \r8, rcx
|
||||
adox \r8, rax
|
||||
|
||||
|
||||
mov rdx, [rdi + 8*\k]
|
||||
|
||||
xor rax, rax /* clear flags */
|
||||
|
||||
mulx rbx, rax, [rsi + 0]
|
||||
adox \r0, rax
|
||||
|
||||
mulx rcx, rax, [rsi + 8]
|
||||
adcx \r1, rbx
|
||||
adox \r1, rax
|
||||
|
||||
mulx rbx, rax, [rsi + 16]
|
||||
adcx \r2, rcx
|
||||
adox \r2, rax
|
||||
|
||||
mulx rcx, rax, [rsi + 24]
|
||||
adcx \r3, rbx
|
||||
adox \r3, rax
|
||||
|
||||
mulx rbx, rax, [rsi + 32]
|
||||
adcx \r4, rcx
|
||||
adox \r4, rax
|
||||
|
||||
mulx rcx, rax, [rsi + 40]
|
||||
adcx \r5, rbx
|
||||
adox \r5, rax
|
||||
|
||||
mulx rbx, rax, [rsi + 48]
|
||||
adcx \r6, rcx
|
||||
adox \r6, rax
|
||||
|
||||
mulx rcx, rax, [rsi + 56]
|
||||
adcx \r7, rbx
|
||||
adox \r7, rax
|
||||
|
||||
mov rax, 0
|
||||
adcx \r8, rcx
|
||||
adox \r8, rax
|
||||
|
||||
.endm
|
||||
|
||||
MULSTEP 0, r8, r9, r10, r11, r12, r13, r14, r15, rbp
|
||||
MULSTEP 1, r9, r10, r11, r12, r13, r14, r15, rbp, r8
|
||||
MULSTEP 2, r10, r11, r12, r13, r14, r15, rbp, r8, r9
|
||||
MULSTEP 3, r11, r12, r13, r14, r15, rbp, r8, r9, r10
|
||||
MULSTEP 4, r12, r13, r14, r15, rbp, r8, r9, r10, r11
|
||||
MULSTEP 5, r13, r14, r15, rbp, r8, r9, r10, r11, r12
|
||||
MULSTEP 6, r14, r15, rbp, r8, r9, r10, r11, r12, r13
|
||||
MULSTEP 7, r15, rbp, r8, r9, r10, r11, r12, r13, r14
|
||||
|
||||
pop rdi
|
||||
|
||||
mov [rdi + 0], rbp
|
||||
mov [rdi + 8], r8
|
||||
mov [rdi + 16], r9
|
||||
mov [rdi + 24], r10
|
||||
mov [rdi + 32], r11
|
||||
mov [rdi + 40], r12
|
||||
mov [rdi + 48], r13
|
||||
mov [rdi + 56], r14
|
||||
|
||||
pop r15
|
||||
pop r14
|
||||
pop r13
|
||||
pop r12
|
||||
pop rbx
|
||||
pop rbp
|
||||
jmp .reduce_once
|
||||
|
||||
.global fp_mul2
|
||||
fp_mul2:
|
||||
mov rdx, rdi
|
||||
jmp fp_mul3
|
||||
|
||||
.global fp_sq2
|
||||
fp_sq2:
|
||||
/* TODO implement optimized Montgomery squaring */
|
||||
mov rdx, rsi
|
||||
jmp fp_mul3
|
||||
|
||||
.global fp_sq1
|
||||
fp_sq1:
|
||||
mov rsi, rdi
|
||||
jmp fp_sq2
|
||||
|
||||
/* (obviously) not constant time in the exponent! */
|
||||
.fp_pow:
|
||||
push rbx
|
||||
mov rbx, rsi
|
||||
push r12
|
||||
push r13
|
||||
push rdi
|
||||
sub rsp, 64
|
||||
|
||||
mov rsi, rdi
|
||||
mov rdi, rsp
|
||||
call fp_copy
|
||||
|
||||
mov rdi, [rsp + 64]
|
||||
lea rsi, [rip + fp_1]
|
||||
call fp_copy
|
||||
|
||||
.macro POWSTEP, k
|
||||
mov r13, [rbx + 8*\k]
|
||||
xor r12, r12
|
||||
|
||||
0:
|
||||
test r13, 1
|
||||
jz 1f
|
||||
|
||||
mov rdi, [rsp + 64]
|
||||
mov rsi, rsp
|
||||
call fp_mul2
|
||||
|
||||
1:
|
||||
mov rdi, rsp
|
||||
call fp_sq1
|
||||
|
||||
shr r13
|
||||
|
||||
inc r12
|
||||
test r12, 64
|
||||
jz 0b
|
||||
.endm
|
||||
|
||||
POWSTEP 0
|
||||
POWSTEP 1
|
||||
POWSTEP 2
|
||||
POWSTEP 3
|
||||
POWSTEP 4
|
||||
POWSTEP 5
|
||||
POWSTEP 6
|
||||
POWSTEP 7
|
||||
|
||||
add rsp, 64+8
|
||||
pop r13
|
||||
pop r12
|
||||
pop rbx
|
||||
ret
|
||||
|
||||
.section .rodata
|
||||
.p_minus_2:
|
||||
.quad 0x1b81b90533c6c879, 0xc2721bf457aca835, 0x516730cc1f0b4f25, 0xa7aac6c567f35507
|
||||
.quad 0x5afbfcc69322c9cd, 0xb42d083aedc88c42, 0xfc8ab0d15e3e4c4a, 0x65b48e8f740f89bf
|
||||
|
||||
.section .text
|
||||
|
||||
/* TODO use a better addition chain? */
|
||||
.global fp_inv
|
||||
fp_inv:
|
||||
lea rsi, [rip + .p_minus_2]
|
||||
jmp .fp_pow
|
||||
|
||||
.section .rodata
|
||||
.p_minus_1_halves:
|
||||
.quad 0x8dc0dc8299e3643d, 0xe1390dfa2bd6541a, 0xa8b398660f85a792, 0xd3d56362b3f9aa83
|
||||
.quad 0x2d7dfe63499164e6, 0x5a16841d76e44621, 0xfe455868af1f2625, 0x32da4747ba07c4df
|
||||
|
||||
.section .text
|
||||
|
||||
/* TODO use a better addition chain? */
|
||||
.global fp_issquare
|
||||
fp_issquare:
|
||||
push rdi
|
||||
lea rsi, [rip + .p_minus_1_halves]
|
||||
call .fp_pow
|
||||
pop rdi
|
||||
|
||||
xor rax, rax
|
||||
.set k, 0
|
||||
.rept 8
|
||||
mov rsi, [rdi + 8*k]
|
||||
xor rsi, [rip + fp_1 + 8*k]
|
||||
or rax, rsi
|
||||
.set k, k+1
|
||||
.endr
|
||||
test rax, rax
|
||||
setz al
|
||||
movzx rax, al
|
||||
ret
|
||||
|
||||
|
||||
/* not constant time (but this shouldn't leak anything of importance) */
|
||||
.global fp_random
|
||||
fp_random:
|
||||
|
||||
push rdi
|
||||
mov rsi, 64
|
||||
call randombytes
|
||||
pop rdi
|
||||
mov rax, 1
|
||||
shl rax, (pbits % 64)
|
||||
dec rax
|
||||
and [rdi + 56], rax
|
||||
|
||||
.set k, 7
|
||||
.rept 8
|
||||
mov rax, [rip + p + 8*k]
|
||||
cmp [rdi + 8*k], rax
|
||||
jge fp_random
|
||||
jl 0f
|
||||
.set k, k-1
|
||||
.endr
|
||||
0:
|
||||
ret
|
||||
|
Binary file not shown.
@ -1,99 +0,0 @@
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
#include <time.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "u512.h"
|
||||
#include "fp.h"
|
||||
#include "mont.h"
|
||||
#include "csidh.h"
|
||||
|
||||
void u512_print(u512 const *x)
|
||||
{
|
||||
for (size_t i = 63; i < 64; --i)
|
||||
printf("%02hhx", i[(unsigned char *) x->c]);
|
||||
}
|
||||
|
||||
void fp_print(fp const *x)
|
||||
{
|
||||
u512 y;
|
||||
fp_dec(&y, x);
|
||||
u512_print(&y);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
clock_t t0, t1;
|
||||
|
||||
private_key priv_alice, priv_bob;
|
||||
public_key pub_alice, pub_bob;
|
||||
public_key shared_alice, shared_bob;
|
||||
|
||||
printf("\n");
|
||||
|
||||
|
||||
t0 = clock();
|
||||
csidh_private(&priv_alice);
|
||||
t1 = clock();
|
||||
|
||||
printf("Alice's private key (%7.3lf ms):\n ", 1000. * (t1 - t0) / CLOCKS_PER_SEC);
|
||||
for (size_t i = 0; i < sizeof(priv_alice); ++i)
|
||||
printf("%02hhx", i[(uint8_t *) &priv_alice]);
|
||||
printf("\n\n");
|
||||
|
||||
t0 = clock();
|
||||
csidh_private(&priv_bob);
|
||||
t1 = clock();
|
||||
|
||||
printf("Bob's private key (%7.3lf ms):\n ", 1000. * (t1 - t0) / CLOCKS_PER_SEC);
|
||||
for (size_t i = 0; i < sizeof(priv_bob); ++i)
|
||||
printf("%02hhx", i[(uint8_t *) &priv_bob]);
|
||||
printf("\n\n");
|
||||
|
||||
|
||||
t0 = clock();
|
||||
assert(csidh(&pub_alice, &base, &priv_alice));
|
||||
t1 = clock();
|
||||
|
||||
printf("Alice's public key (%7.3lf ms):\n ", 1000. * (t1 - t0) / CLOCKS_PER_SEC);
|
||||
fp_print(&pub_alice.A);
|
||||
printf("\n\n");
|
||||
|
||||
t0 = clock();
|
||||
assert(csidh(&pub_bob, &base, &priv_bob));
|
||||
t1 = clock();
|
||||
|
||||
printf("Bob's public key (%7.3lf ms):\n ", 1000. * (t1 - t0) / CLOCKS_PER_SEC);
|
||||
fp_print(&pub_bob.A);
|
||||
printf("\n\n");
|
||||
|
||||
|
||||
t0 = clock();
|
||||
assert(csidh(&shared_alice, &pub_bob, &priv_alice));
|
||||
t1 = clock();
|
||||
|
||||
printf("Alice's shared secret (%7.3lf ms):\n ", 1000. * (t1 - t0) / CLOCKS_PER_SEC);
|
||||
fp_print(&shared_alice.A);
|
||||
printf("\n\n");
|
||||
|
||||
t0 = clock();
|
||||
assert(csidh(&shared_bob, &pub_alice, &priv_bob));
|
||||
t1 = clock();
|
||||
|
||||
printf("Bob's shared secret (%7.3lf ms):\n ", 1000. * (t1 - t0) / CLOCKS_PER_SEC);
|
||||
fp_print(&shared_bob.A);
|
||||
printf("\n\n");
|
||||
|
||||
printf(" ");
|
||||
if (memcmp(&shared_alice, &shared_bob, sizeof(public_key)))
|
||||
printf("\x1b[31mNOT EQUAL!\x1b[0m\n");
|
||||
else
|
||||
printf("\x1b[32mequal.\x1b[0m\n");
|
||||
printf("\n");
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
@ -1,188 +0,0 @@
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "mont.h"
|
||||
|
||||
void xDBLADD(proj *R, proj *S, proj const *P, proj const *Q, proj const *PQ, proj const *A24)
|
||||
{
|
||||
fp tmp0, tmp1, tmp2;
|
||||
|
||||
fp_add3(&tmp0, &P->x, &P->z);
|
||||
fp_sub3(&tmp1, &P->x, &P->z);
|
||||
fp_sq2(&R->x, &tmp0);
|
||||
fp_sub3(&tmp2, &Q->x, &Q->z);
|
||||
fp_add3(&S->x, &Q->x, &Q->z);
|
||||
fp_mul2(&tmp0, &tmp2);
|
||||
fp_sq2(&R->z, &tmp1);
|
||||
fp_mul2(&tmp1, &S->x);
|
||||
fp_sub3(&tmp2, &R->x, &R->z);
|
||||
fp_mul2(&R->z, &A24->z);
|
||||
fp_mul2(&R->x, &R->z);
|
||||
fp_mul3(&S->x, &A24->x, &tmp2);
|
||||
fp_sub3(&S->z, &tmp0, &tmp1);
|
||||
fp_add2(&R->z, &S->x);
|
||||
fp_add3(&S->x, &tmp0, &tmp1);
|
||||
fp_mul2(&R->z, &tmp2);
|
||||
fp_sq1(&S->z);
|
||||
fp_sq1(&S->x);
|
||||
fp_mul2(&S->z, &PQ->x);
|
||||
fp_mul2(&S->x, &PQ->z);
|
||||
}
|
||||
|
||||
void xDBL(proj *Q, proj const *A, proj const *P)
|
||||
{
|
||||
fp a, b, c;
|
||||
fp_add3(&a, &P->x, &P->z);
|
||||
fp_sq1(&a);
|
||||
fp_sub3(&b, &P->x, &P->z);
|
||||
fp_sq1(&b);
|
||||
fp_sub3(&c, &a, &b);
|
||||
fp_add2(&b, &b); fp_add2(&b, &b); /* multiplication by 4 */
|
||||
fp_mul2(&b, &A->z);
|
||||
fp_mul3(&Q->x, &a, &b);
|
||||
fp_add3(&a, &A->z, &A->z); /* multiplication by 2 */
|
||||
fp_add2(&a, &A->x);
|
||||
fp_mul2(&a, &c);
|
||||
fp_add2(&a, &b);
|
||||
fp_mul3(&Q->z, &a, &c);
|
||||
}
|
||||
|
||||
void xADD(proj *S, proj const *P, proj const *Q, proj const *PQ)
|
||||
{
|
||||
fp a, b, c, d;
|
||||
fp_add3(&a, &P->x, &P->z);
|
||||
fp_sub3(&b, &P->x, &P->z);
|
||||
fp_add3(&c, &Q->x, &Q->z);
|
||||
fp_sub3(&d, &Q->x, &Q->z);
|
||||
fp_mul2(&a, &d);
|
||||
fp_mul2(&b, &c);
|
||||
fp_add3(&c, &a, &b);
|
||||
fp_sub3(&d, &a, &b);
|
||||
fp_sq1(&c);
|
||||
fp_sq1(&d);
|
||||
fp_mul3(&S->x, &PQ->z, &c);
|
||||
fp_mul3(&S->z, &PQ->x, &d);
|
||||
}
|
||||
|
||||
/* Montgomery ladder. */
|
||||
/* P must not be the unique point of order 2. */
|
||||
/* not constant-time! */
|
||||
void xMUL(proj *Q, proj const *A, proj const *P, u512 const *k)
|
||||
{
|
||||
proj R = *P;
|
||||
proj A24;
|
||||
const proj Pcopy = *P; /* in case Q = P */
|
||||
|
||||
Q->x = fp_1;
|
||||
Q->z = fp_0;
|
||||
|
||||
fp_add3(&A24.x, &A->z, &A->z);
|
||||
fp_add3(&A24.z, &A24.x, &A24.x);
|
||||
fp_add2(&A24.x, &A->x);
|
||||
|
||||
unsigned long i = 512;
|
||||
while (--i && !u512_bit(k, i));
|
||||
|
||||
do {
|
||||
|
||||
bool bit = u512_bit(k, i);
|
||||
|
||||
if (bit) { proj T = *Q; *Q = R; R = T; } /* not constant-time */
|
||||
//fp_cswap(&Q->x, &R.x, bit);
|
||||
//fp_cswap(&Q->z, &R.z, bit);
|
||||
|
||||
xDBLADD(Q, &R, Q, &R, &Pcopy, &A24);
|
||||
|
||||
if (bit) { proj T = *Q; *Q = R; R = T; } /* not constant-time */
|
||||
//fp_cswap(&Q->x, &R.x, bit);
|
||||
//fp_cswap(&Q->z, &R.z, bit);
|
||||
|
||||
} while (i--);
|
||||
}
|
||||
|
||||
|
||||
/* computes the isogeny with kernel point K of order k */
|
||||
/* returns the new curve coefficient A and the image of P */
|
||||
/* (obviously) not constant time in k */
|
||||
void xISOG(proj *A, proj *P, proj const *K, uint64_t k)
|
||||
{
|
||||
assert (k >= 3);
|
||||
assert (k % 2 == 1);
|
||||
|
||||
fp tmp0, tmp1;
|
||||
fp T[4] = {K->z, K->x, K->x, K->z};
|
||||
proj Q;
|
||||
|
||||
fp_mul3(&Q.x, &P->x, &K->x);
|
||||
fp_mul3(&tmp0, &P->z, &K->z);
|
||||
fp_sub2(&Q.x, &tmp0);
|
||||
|
||||
fp_mul3(&Q.z, &P->x, &K->z);
|
||||
fp_mul3(&tmp0, &P->z, &K->x);
|
||||
fp_sub2(&Q.z, &tmp0);
|
||||
|
||||
proj M[3] = {*K};
|
||||
xDBL(&M[1], A, K);
|
||||
|
||||
for (uint64_t i = 1; i < k / 2; ++i) {
|
||||
|
||||
if (i >= 2)
|
||||
xADD(&M[i % 3], &M[(i - 1) % 3], K, &M[(i - 2) % 3]);
|
||||
|
||||
fp_mul3(&tmp0, &M[i % 3].x, &T[0]);
|
||||
fp_mul3(&tmp1, &M[i % 3].z, &T[1]);
|
||||
fp_add3(&T[0], &tmp0, &tmp1);
|
||||
|
||||
fp_mul2(&T[1], &M[i % 3].x);
|
||||
|
||||
fp_mul3(&tmp0, &M[i % 3].z, &T[2]);
|
||||
fp_mul3(&tmp1, &M[i % 3].x, &T[3]);
|
||||
fp_add3(&T[2], &tmp0, &tmp1);
|
||||
|
||||
fp_mul2(&T[3], &M[i % 3].z);
|
||||
|
||||
|
||||
fp_mul3(&tmp0, &P->x, &M[i % 3].x);
|
||||
fp_mul3(&tmp1, &P->z, &M[i % 3].z);
|
||||
fp_sub2(&tmp0, &tmp1);
|
||||
fp_mul2(&Q.x, &tmp0);
|
||||
|
||||
fp_mul3(&tmp0, &P->x, &M[i % 3].z);
|
||||
fp_mul3(&tmp1, &P->z, &M[i % 3].x);
|
||||
fp_sub2(&tmp0, &tmp1);
|
||||
fp_mul2(&Q.z, &tmp0);
|
||||
}
|
||||
|
||||
fp_mul2(&T[0], &T[1]);
|
||||
fp_add2(&T[0], &T[0]); /* multiplication by 2 */
|
||||
|
||||
fp_sq1(&T[1]);
|
||||
|
||||
fp_mul2(&T[2], &T[3]);
|
||||
fp_add2(&T[2], &T[2]); /* multiplication by 2 */
|
||||
|
||||
fp_sq1(&T[3]);
|
||||
|
||||
/* Ax := T[1] * T[3] * Ax - 3 * Az * (T[1] * T[2] - T[0] * T[3]) */
|
||||
fp_mul3(&tmp0, &T[1], &T[2]);
|
||||
fp_mul3(&tmp1, &T[0], &T[3]);
|
||||
fp_sub2(&tmp0, &tmp1);
|
||||
fp_mul2(&tmp0, &A->z);
|
||||
fp_add3(&tmp1, &tmp0, &tmp0); fp_add2(&tmp0, &tmp1); /* multiplication by 3 */
|
||||
|
||||
fp_mul3(&tmp1, &T[1], &T[3]);
|
||||
fp_mul2(&tmp1, &A->x);
|
||||
|
||||
fp_sub3(&A->x, &tmp1, &tmp0);
|
||||
|
||||
/* Az := Az * T[3]^2 */
|
||||
fp_sq1(&T[3]);
|
||||
fp_mul2(&A->z, &T[3]);
|
||||
|
||||
/* X := X * Xim^2, Z := Z * Zim^2 */
|
||||
fp_sq1(&Q.x);
|
||||
fp_sq1(&Q.z);
|
||||
fp_mul2(&P->x, &Q.x);
|
||||
fp_mul2(&P->z, &Q.z);
|
||||
}
|
||||
|
@ -1,19 +0,0 @@
|
||||
#ifndef MONT_H
|
||||
#define MONT_H
|
||||
|
||||
#include "u512.h"
|
||||
#include "fp.h"
|
||||
|
||||
/* P^1 over fp. */
|
||||
typedef struct proj {
|
||||
fp x;
|
||||
fp z;
|
||||
} proj;
|
||||
|
||||
void xDBL(proj *Q, proj const *A, proj const *P);
|
||||
void xADD(proj *S, proj const *P, proj const *Q, proj const *PQ);
|
||||
void xDBLADD(proj *R, proj *S, proj const *P, proj const *Q, proj const *PQ, proj const *A);
|
||||
void xMUL(proj *Q, proj const *A, proj const *P, u512 const *k);
|
||||
void xISOG(proj *A, proj *P, proj const *K, uint64_t k);
|
||||
|
||||
#endif
|
@ -1,18 +0,0 @@
|
||||
|
||||
#include "rng.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
#include <fcntl.h>
|
||||
|
||||
void randombytes(void *x, size_t l)
|
||||
{
|
||||
static int fd = -1;
|
||||
ssize_t n;
|
||||
if (fd < 0 && 0 > (fd = open("/dev/urandom", O_RDONLY)))
|
||||
exit(1);
|
||||
for (size_t i = 0; i < l; i += n)
|
||||
if (0 >= (n = read(fd, (char *) x + i, l - i)))
|
||||
exit(2);
|
||||
}
|
||||
|
@ -1,8 +0,0 @@
|
||||
#ifndef RNG_H
|
||||
#define RNG_H
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
void randombytes(void *x, size_t l);
|
||||
|
||||
#endif
|
@ -1,128 +0,0 @@
|
||||
#!/usr/bin/env sage
|
||||
#coding: utf8
|
||||
|
||||
proof.all(False)
|
||||
|
||||
|
||||
# parameters.
|
||||
|
||||
ls = list(primes(3, 374)) + [587] # Elkies primes
|
||||
#ls = list(primes(3, 47)) + [97] # (a smaller example)
|
||||
p = 4 * prod(ls) - 1
|
||||
assert is_prime(p)
|
||||
print "\nElkies primes:", " ".join(map(str, ls))
|
||||
|
||||
max_exp = ceil((sqrt(p) ** (1/len(ls)) - 1) / 2)
|
||||
assert (2 * max_exp + 1) ** len(ls) >= sqrt(p)
|
||||
print "exponents are chosen in the range {}..{}.".format(-max_exp, max_exp)
|
||||
|
||||
base = GF(p)(0) # Montgomery coefficient of starting curve
|
||||
|
||||
|
||||
# helper functions.
|
||||
|
||||
# NB: all the operations can be computed entirely over the prime field,
|
||||
# but for simplicity of this implementation we will make use of curves
|
||||
# defined over GF(p^2). note this slows everything down quite a bit.
|
||||
|
||||
Fp2.<i> = GF(p**2, modulus = x**2 + 1)
|
||||
|
||||
def montgomery_curve(A):
|
||||
return EllipticCurve(Fp2, [0, A, 0, 1, 0])
|
||||
|
||||
# sage's isogeny formulas return Weierstraß curves, hence we need this...
|
||||
def montgomery_coefficient(E):
|
||||
Ew = E.change_ring(GF(p)).short_weierstrass_model()
|
||||
_, _, _, a, b = Ew.a_invariants()
|
||||
R.<z> = GF(p)[]
|
||||
r = (z**3 + a*z + b).roots(multiplicities=False)[0]
|
||||
s = sqrt(3 * r**2 + a)
|
||||
if not is_square(s): s = -s
|
||||
A = 3 * r / s
|
||||
assert montgomery_curve(A).change_ring(GF(p)).is_isomorphic(Ew)
|
||||
return GF(p)(A)
|
||||
|
||||
|
||||
# actual implementation.
|
||||
|
||||
def private():
|
||||
return [randrange(-max_exp, max_exp + 1) for _ in range(len(ls))]
|
||||
|
||||
def validate(A):
|
||||
while True:
|
||||
k = 1
|
||||
P = montgomery_curve(A).lift_x(GF(p).random_element())
|
||||
for l in ls:
|
||||
Q = (p + 1) // l * P
|
||||
if not Q: continue
|
||||
if l * Q: return False
|
||||
k *= l
|
||||
if k > 4 * sqrt(p): return True
|
||||
|
||||
def action(pub, priv):
|
||||
|
||||
E = montgomery_curve(pub)
|
||||
es = priv[:]
|
||||
|
||||
while any(es):
|
||||
|
||||
E._order = (p + 1)**2 # else sage computes this
|
||||
|
||||
P = E.lift_x(GF(p).random_element())
|
||||
s = +1 if P.xy()[1] in GF(p) else -1
|
||||
k = prod(l for l, e in zip(ls, es) if sign(e) == s)
|
||||
P *= (p + 1) // k
|
||||
|
||||
for i, (l, e) in enumerate(zip(ls, es)):
|
||||
|
||||
if sign(e) != s: continue
|
||||
|
||||
Q = k // l * P
|
||||
if not Q: continue
|
||||
Q._order = l # else sage computes this
|
||||
phi = E.isogeny(Q)
|
||||
|
||||
E, P = phi.codomain(), phi(P)
|
||||
es[i] -= s
|
||||
k //= l
|
||||
|
||||
return montgomery_coefficient(E)
|
||||
|
||||
|
||||
# example.
|
||||
|
||||
print
|
||||
|
||||
print "testing public-key validation on random ordinary curves (should be all 0s):\n ",
|
||||
for _ in range(16):
|
||||
while True:
|
||||
A = GF(p).random_element()
|
||||
if montgomery_curve(A).is_ordinary(): break
|
||||
print int(validate(A)),
|
||||
print
|
||||
|
||||
privA = private()
|
||||
print "\nAlice's private key:\n ", " ".join(map('{:2d}'.format, privA))
|
||||
|
||||
pubA = action(base, privA)
|
||||
print "\nAlice's public key:\n ", pubA,
|
||||
print " (valid: {})".format(int(validate(pubA)))
|
||||
|
||||
privB = private()
|
||||
print "\nBob's private key:\n ", " ".join(map('{:2d}'.format, privB))
|
||||
|
||||
pubB = action(base, privB)
|
||||
print "\nBob's public key:\n ", pubB,
|
||||
print " (valid: {})".format(int(validate(pubB)))
|
||||
|
||||
sharedA = action(pubB, privA)
|
||||
print "\nAlice's shared secret:\n ", sharedA
|
||||
|
||||
sharedB = action(pubA, privB)
|
||||
print "\nBob's shared secret:\n ", sharedB
|
||||
|
||||
if sharedA == sharedB:
|
||||
print "\n--> equal!\n"
|
||||
else:
|
||||
print "\n--> NOT EQUAL?!\n"
|
||||
|
@ -1,22 +0,0 @@
|
||||
#ifndef UINT_H
|
||||
#define UINT_H
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
typedef struct u512 {
|
||||
uint64_t c[8];
|
||||
} u512;
|
||||
|
||||
extern const u512 u512_1;
|
||||
|
||||
void u512_set(u512 *x, uint64_t y);
|
||||
|
||||
bool u512_bit(u512 const *x, uint64_t k);
|
||||
|
||||
bool u512_add3(u512 *x, u512 const *y, u512 const *z); /* returns carry */
|
||||
bool u512_sub3(u512 *x, u512 const *y, u512 const *z); /* returns borrow */
|
||||
|
||||
void u512_mul3_64(u512 *x, u512 const *y, uint64_t z);
|
||||
|
||||
#endif
|
@ -1,102 +0,0 @@
|
||||
|
||||
.intel_syntax noprefix
|
||||
|
||||
.section .rodata
|
||||
|
||||
.global u512_1
|
||||
u512_1: .quad 1, 0, 0, 0, 0, 0, 0, 0
|
||||
|
||||
|
||||
.section .text
|
||||
|
||||
.global u512_set
|
||||
u512_set:
|
||||
cld
|
||||
mov rax, rsi
|
||||
stosq
|
||||
xor rax, rax
|
||||
mov rcx, 7
|
||||
rep stosq
|
||||
ret
|
||||
|
||||
|
||||
.global u512_bit
|
||||
u512_bit:
|
||||
mov rcx, rsi
|
||||
and rcx, 0x3f
|
||||
shr rsi, 6
|
||||
mov rax, [rdi + 8*rsi]
|
||||
shr rax, cl
|
||||
and rax, 1
|
||||
ret
|
||||
|
||||
|
||||
.global u512_add3
|
||||
u512_add3:
|
||||
mov rax, [rsi + 0]
|
||||
add rax, [rdx + 0]
|
||||
mov [rdi + 0], rax
|
||||
.set k, 1
|
||||
.rept 7
|
||||
mov rax, [rsi + 8*k]
|
||||
adc rax, [rdx + 8*k]
|
||||
mov [rdi + 8*k], rax
|
||||
.set k, k+1
|
||||
.endr
|
||||
setc al
|
||||
movzx rax, al
|
||||
ret
|
||||
|
||||
.global u512_sub3
|
||||
u512_sub3:
|
||||
mov rax, [rsi + 0]
|
||||
sub rax, [rdx + 0]
|
||||
mov [rdi + 0], rax
|
||||
.set k, 1
|
||||
.rept 7
|
||||
mov rax, [rsi + 8*k]
|
||||
sbb rax, [rdx + 8*k]
|
||||
mov [rdi + 8*k], rax
|
||||
.set k, k+1
|
||||
.endr
|
||||
setc al
|
||||
movzx rax, al
|
||||
ret
|
||||
|
||||
|
||||
.global u512_mul3_64
|
||||
u512_mul3_64:
|
||||
|
||||
mulx r10, rax, [rsi + 0]
|
||||
mov [rdi + 0], rax
|
||||
|
||||
mulx r11, rax, [rsi + 8]
|
||||
add rax, r10
|
||||
mov [rdi + 8], rax
|
||||
|
||||
mulx r10, rax, [rsi + 16]
|
||||
adcx rax, r11
|
||||
mov [rdi + 16], rax
|
||||
|
||||
mulx r11, rax, [rsi + 24]
|
||||
adcx rax, r10
|
||||
mov [rdi + 24], rax
|
||||
|
||||
mulx r10, rax, [rsi + 32]
|
||||
adcx rax, r11
|
||||
mov [rdi + 32],rax
|
||||
|
||||
mulx r11, rax, [rsi + 40]
|
||||
adcx rax, r10
|
||||
mov [rdi + 40],rax
|
||||
|
||||
mulx r10, rax, [rsi + 48]
|
||||
adcx rax, r11
|
||||
mov [rdi + 48],rax
|
||||
|
||||
mulx r11, rax, [rsi + 56]
|
||||
adcx rax, r10
|
||||
mov [rdi + 56],rax
|
||||
|
||||
ret
|
||||
|
Loading…
Reference in New Issue
Block a user