139 lines
4.2 KiB
Go
139 lines
4.2 KiB
Go
|
package sike
|
||
|
|
||
|
// Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x).
|
||
|
// Uses variation of sliding-window algorithm from with window size
|
||
|
// of 5 and least to most significant bit sliding (left-to-right)
|
||
|
// See HAC 14.85 for general description.
|
||
|
//
|
||
|
// Allowed to overlap x with dest.
|
||
|
// All values in Montgomery domains
|
||
|
// Set dest = x^(2^k), for k >= 1, by repeated squarings.
|
||
|
func p34(dest, x *Fp) {
|
||
|
var lookup [16]Fp
|
||
|
|
||
|
// This performs sum(powStrategy) + 1 squarings and len(lookup) + len(mulStrategy)
|
||
|
// multiplications.
|
||
|
powStrategy := []uint8{3, 10, 7, 5, 6, 5, 3, 8, 4, 7, 5, 6, 4, 5, 9, 6, 3, 11, 5, 5, 2, 8, 4, 7, 7, 8, 5, 6, 4, 8, 5, 2, 10, 6, 5, 4, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1}
|
||
|
mulStrategy := []uint8{2, 15, 9, 8, 14, 12, 2, 8, 5, 15, 8, 15, 6, 6, 3, 2, 0, 10, 9, 13, 1, 12, 3, 7, 1, 10, 8, 11, 2, 15, 14, 1, 11, 12, 14, 3, 11, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0}
|
||
|
initialMul := uint8(8)
|
||
|
|
||
|
// Precompute lookup table of odd multiples of x for window
|
||
|
// size k=5.
|
||
|
var xx Fp
|
||
|
fpMulRdc(&xx, x, x)
|
||
|
lookup[0] = *x
|
||
|
for i := 1; i < 16; i++ {
|
||
|
fpMulRdc(&lookup[i], &lookup[i-1], &xx)
|
||
|
}
|
||
|
|
||
|
// Now lookup = {x, x^3, x^5, ... }
|
||
|
// so that lookup[i] = x^{2*i + 1}
|
||
|
// so that lookup[k/2] = x^k, for odd k
|
||
|
*dest = lookup[initialMul]
|
||
|
for i := uint8(0); i < uint8(len(powStrategy)); i++ {
|
||
|
fpMulRdc(dest, dest, dest)
|
||
|
for j := uint8(1); j < powStrategy[i]; j++ {
|
||
|
fpMulRdc(dest, dest, dest)
|
||
|
}
|
||
|
fpMulRdc(dest, dest, &lookup[mulStrategy[i]])
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func add(dest, lhs, rhs *Fp2) {
|
||
|
fpAddRdc(&dest.A, &lhs.A, &rhs.A)
|
||
|
fpAddRdc(&dest.B, &lhs.B, &rhs.B)
|
||
|
}
|
||
|
|
||
|
func sub(dest, lhs, rhs *Fp2) {
|
||
|
fpSubRdc(&dest.A, &lhs.A, &rhs.A)
|
||
|
fpSubRdc(&dest.B, &lhs.B, &rhs.B)
|
||
|
}
|
||
|
|
||
|
func mul(dest, lhs, rhs *Fp2) {
|
||
|
// Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b).
|
||
|
a := &lhs.A
|
||
|
b := &lhs.B
|
||
|
c := &rhs.A
|
||
|
d := &rhs.B
|
||
|
|
||
|
// We want to compute
|
||
|
//
|
||
|
// (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i
|
||
|
//
|
||
|
// Use Karatsuba's trick: note that
|
||
|
//
|
||
|
// (b - a)*(c - d) = (b*c + a*d) - a*c - b*d
|
||
|
//
|
||
|
// so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d.
|
||
|
|
||
|
var ac, bd FpX2
|
||
|
fpMul(&ac, a, c) // = a*c*R*R
|
||
|
fpMul(&bd, b, d) // = b*d*R*R
|
||
|
|
||
|
var b_minus_a, c_minus_d Fp
|
||
|
fpSubRdc(&b_minus_a, b, a) // = (b-a)*R
|
||
|
fpSubRdc(&c_minus_d, c, d) // = (c-d)*R
|
||
|
|
||
|
var ad_plus_bc FpX2
|
||
|
fpMul(&ad_plus_bc, &b_minus_a, &c_minus_d) // = (b-a)*(c-d)*R*R
|
||
|
fp2Add(&ad_plus_bc, &ad_plus_bc, &ac) // = ((b-a)*(c-d) + a*c)*R*R
|
||
|
fp2Add(&ad_plus_bc, &ad_plus_bc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R
|
||
|
|
||
|
fpMontRdc(&dest.B, &ad_plus_bc) // = (a*d + b*c)*R mod p
|
||
|
|
||
|
var ac_minus_bd FpX2
|
||
|
fp2Sub(&ac_minus_bd, &ac, &bd) // = (a*c - b*d)*R*R
|
||
|
fpMontRdc(&dest.A, &ac_minus_bd) // = (a*c - b*d)*R mod p
|
||
|
}
|
||
|
|
||
|
func inv(dest, x *Fp2) {
|
||
|
var e1, e2 FpX2
|
||
|
var f1, f2 Fp
|
||
|
|
||
|
fpMul(&e1, &x.A, &x.A) // = a*a*R*R
|
||
|
fpMul(&e2, &x.B, &x.B) // = b*b*R*R
|
||
|
fp2Add(&e1, &e1, &e2) // = (a^2 + b^2)*R*R
|
||
|
fpMontRdc(&f1, &e1) // = (a^2 + b^2)*R mod p
|
||
|
// Now f1 = a^2 + b^2
|
||
|
|
||
|
fpMulRdc(&f2, &f1, &f1)
|
||
|
p34(&f2, &f2)
|
||
|
fpMulRdc(&f2, &f2, &f2)
|
||
|
fpMulRdc(&f2, &f2, &f1)
|
||
|
|
||
|
fpMul(&e1, &x.A, &f2)
|
||
|
fpMontRdc(&dest.A, &e1)
|
||
|
|
||
|
fpSubRdc(&f1, &Fp{}, &x.B)
|
||
|
fpMul(&e1, &f1, &f2)
|
||
|
fpMontRdc(&dest.B, &e1)
|
||
|
}
|
||
|
|
||
|
func sqr(dest, x *Fp2) {
|
||
|
var a2, aPlusB, aMinusB Fp
|
||
|
var a2MinB2, ab2 FpX2
|
||
|
|
||
|
a := &x.A
|
||
|
b := &x.B
|
||
|
|
||
|
// (a + bi)*(a + bi) = (a^2 - b^2) + 2abi.
|
||
|
fpAddRdc(&a2, a, a) // = a*R + a*R = 2*a*R
|
||
|
fpAddRdc(&aPlusB, a, b) // = a*R + b*R = (a+b)*R
|
||
|
fpSubRdc(&aMinusB, a, b) // = a*R - b*R = (a-b)*R
|
||
|
fpMul(&a2MinB2, &aPlusB, &aMinusB) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R
|
||
|
fpMul(&ab2, &a2, b) // = 2*a*b*R*R
|
||
|
fpMontRdc(&dest.A, &a2MinB2) // = (a^2 - b^2)*R mod p
|
||
|
fpMontRdc(&dest.B, &ab2) // = 2*a*b*R mod p
|
||
|
}
|
||
|
|
||
|
// In case choice == 1, performs following swap in constant time:
|
||
|
// xPx <-> xQx
|
||
|
// xPz <-> xQz
|
||
|
// Otherwise returns xPx, xPz, xQx, xQz unchanged
|
||
|
func condSwap(xPx, xPz, xQx, xQz *Fp2, choice uint8) {
|
||
|
fpSwapCond(&xPx.A, &xQx.A, choice)
|
||
|
fpSwapCond(&xPx.B, &xQx.B, choice)
|
||
|
fpSwapCond(&xPz.A, &xQz.A, choice)
|
||
|
fpSwapCond(&xPz.B, &xQz.B, choice)
|
||
|
}
|