|
- package sike
-
- import (
- "math/bits"
- )
-
- // Fp implementation
-
- // Compute z = x + y (mod 2*p).
- func fpAddRdc(z, x, y *Fp) {
- var carry uint64
-
- // z=x+y % p503
- for i := 0; i < FP_WORDS; i++ {
- z[i], carry = bits.Add64(x[i], y[i], carry)
- }
-
- // z = z - pX2
- carry = 0
- for i := 0; i < FP_WORDS; i++ {
- z[i], carry = bits.Sub64(z[i], pX2[i], carry)
- }
-
- // if z<0 add pX2 back
- mask := uint64(0 - carry)
- carry = 0
- for i := 0; i < FP_WORDS; i++ {
- z[i], carry = bits.Add64(z[i], pX2[i]&mask, carry)
- }
- }
-
- // Compute z = x - y (mod 2*p).
- func fpSubRdc(z, x, y *Fp) {
- var borrow uint64
-
- // z = z - pX2
- for i := 0; i < FP_WORDS; i++ {
- z[i], borrow = bits.Sub64(x[i], y[i], borrow)
- }
-
- // if z<0 add pX2 back
- mask := uint64(0 - borrow)
- borrow = 0
- for i := 0; i < FP_WORDS; i++ {
- z[i], borrow = bits.Add64(z[i], pX2[i]&mask, borrow)
- }
- }
-
- // Reduce a field element in [0, 2*p) to one in [0,p).
- func fpRdcP(x *Fp) {
- var borrow, mask uint64
- for i := 0; i < FP_WORDS; i++ {
- x[i], borrow = bits.Sub64(x[i], p[i], borrow)
- }
-
- // Sets all bits if borrow = 1
- mask = 0 - borrow
- borrow = 0
- for i := 0; i < FP_WORDS; i++ {
- x[i], borrow = bits.Add64(x[i], p[i]&mask, borrow)
- }
- }
-
- // Implementation doesn't actually depend on a prime field.
- func fpSwapCond(x, y *Fp, mask uint8) {
- if mask != 0 {
- var tmp Fp
- copy(tmp[:], y[:])
- copy(y[:], x[:])
- copy(x[:], tmp[:])
- }
- }
-
- // Compute z = x * y.
- func fpMul(z *FpX2, x, y *Fp) {
- var carry, t, u, v uint64
- var hi, lo uint64
-
- for i := uint64(0); i < FP_WORDS; i++ {
- for j := uint64(0); j <= i; j++ {
- hi, lo = bits.Mul64(x[j], y[i-j])
- v, carry = bits.Add64(lo, v, 0)
- u, carry = bits.Add64(hi, u, carry)
- t += carry
- }
- z[i] = v
- v = u
- u = t
- t = 0
- }
-
- for i := FP_WORDS; i < (2*FP_WORDS)-1; i++ {
- for j := i - FP_WORDS + 1; j < FP_WORDS; j++ {
- hi, lo = bits.Mul64(x[j], y[i-j])
- v, carry = bits.Add64(lo, v, 0)
- u, carry = bits.Add64(hi, u, carry)
- t += carry
- }
- z[i] = v
- v = u
- u = t
- t = 0
- }
- z[2*FP_WORDS-1] = v
- }
-
- // Perform Montgomery reduction: set z = x R^{-1} (mod 2*p)
- // with R=2^512. Destroys the input value.
- func fpMontRdc(z *Fp, x *FpX2) {
- var carry, t, u, v uint64
- var hi, lo uint64
- var count int
-
- count = 3 // number of 0 digits in the least significat part of p503 + 1
-
- for i := 0; i < FP_WORDS; i++ {
- for j := 0; j < i; j++ {
- if j < (i - count + 1) {
- hi, lo = bits.Mul64(z[j], p1[i-j])
- v, carry = bits.Add64(lo, v, 0)
- u, carry = bits.Add64(hi, u, carry)
- t += carry
- }
- }
- v, carry = bits.Add64(v, x[i], 0)
- u, carry = bits.Add64(u, 0, carry)
- t += carry
-
- z[i] = v
- v = u
- u = t
- t = 0
- }
-
- for i := FP_WORDS; i < 2*FP_WORDS-1; i++ {
- if count > 0 {
- count--
- }
- for j := i - FP_WORDS + 1; j < FP_WORDS; j++ {
- if j < (FP_WORDS - count) {
- hi, lo = bits.Mul64(z[j], p1[i-j])
- v, carry = bits.Add64(lo, v, 0)
- u, carry = bits.Add64(hi, u, carry)
- t += carry
- }
- }
- v, carry = bits.Add64(v, x[i], 0)
- u, carry = bits.Add64(u, 0, carry)
-
- t += carry
- z[i-FP_WORDS] = v
- v = u
- u = t
- t = 0
- }
- v, carry = bits.Add64(v, x[2*FP_WORDS-1], 0)
- z[FP_WORDS-1] = v
- }
-
- // Compute z = x + y, without reducing mod p.
- func fp2Add(z, x, y *FpX2) {
- var carry uint64
- for i := 0; i < 2*FP_WORDS; i++ {
- z[i], carry = bits.Add64(x[i], y[i], carry)
- }
- }
-
- // Compute z = x - y, without reducing mod p.
- func fp2Sub(z, x, y *FpX2) {
- var borrow, mask uint64
- for i := 0; i < 2*FP_WORDS; i++ {
- z[i], borrow = bits.Sub64(x[i], y[i], borrow)
- }
-
- // Sets all bits if borrow = 1
- mask = 0 - borrow
- borrow = 0
- for i := FP_WORDS; i < 2*FP_WORDS; i++ {
- z[i], borrow = bits.Add64(z[i], p[i-FP_WORDS]&mask, borrow)
- }
- }
-
- // Montgomery multiplication. Input values must be already
- // in Montgomery domain.
- func fpMulRdc(dest, lhs, rhs *Fp) {
- a := lhs // = a*R
- b := rhs // = b*R
-
- var ab FpX2
- fpMul(&ab, a, b) // = a*b*R*R
- fpMontRdc(dest, &ab) // = a*b*R mod p
- }
|