go-sike/sike.go
2019-03-29 22:13:53 +00:00

696 lines
21 KiB
Go

package sike
import (
"crypto/hmac"
"crypto/sha256"
"crypto/subtle"
"errors"
"io"
)
// Constants used for cSHAKE customization
// Those values are different than in [SIKE] - they are encoded on 16bits. This is
// done in order for implementation to be compatible with [REF] and test vectors.
var G = []byte{0x00, 0x00}
var H = []byte{0x01, 0x00}
var F = []byte{0x02, 0x00}
// Generates HMAC-SHA256 sum
func hashMac(out, in, S []byte) {
h := hmac.New(sha256.New, in)
h.Write(S)
copy(out, h.Sum(nil))
}
// Zeroize Fp2
func zeroize(fp *Fp2) {
// Zeroizing in 2 seperated loops tells compiler to
// use fast runtime.memclr()
for i := range fp.A {
fp.A[i] = 0
}
for i := range fp.B {
fp.B[i] = 0
}
}
// Convert the input to wire format.
//
// The output byte slice must be at least 2*bytelen(p) bytes long.
func convFp2ToBytes(output []byte, fp2 *Fp2) {
if len(output) < 2*Params.Bytelen {
panic("output byte slice too short")
}
var a Fp2
fromMontDomain(fp2, &a)
// convert to bytes in little endian form
for i := 0; i < Params.Bytelen; i++ {
// set i = j*8 + k
tmp := i / 8
k := uint64(i % 8)
output[i] = byte(a.A[tmp] >> (8 * k))
output[i+Params.Bytelen] = byte(a.B[tmp] >> (8 * k))
}
}
// Read 2*bytelen(p) bytes into the given ExtensionFieldElement.
//
// It is an error to call this function if the input byte slice is less than 2*bytelen(p) bytes long.
func convBytesToFp2(fp2 *Fp2, input []byte) {
if len(input) < 2*Params.Bytelen {
panic("input byte slice too short")
}
for i := 0; i < Params.Bytelen; i++ {
j := i / 8
k := uint64(i % 8)
fp2.A[j] |= uint64(input[i]) << (8 * k)
fp2.B[j] |= uint64(input[i+Params.Bytelen]) << (8 * k)
}
toMontDomain(fp2)
}
// -----------------------------------------------------------------------------
// Functions for traversing isogeny trees acoording to strategy. Key type 'A' is
//
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
// for public key generation.
func traverseTreePublicKeyA(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint, pub *PublicKey) {
var points = make([]ProjectivePoint, 0, 8)
var indices = make([]int, 0, 8)
var i, sidx int
cparam := CalcCurveParamsEquiv4(curve)
phi := NewIsogeny4()
strat := pub.params.A.IsogenyStrategy
stratSz := len(strat)
for j := 1; j <= stratSz; j++ {
for i <= stratSz-j {
points = append(points, *xR)
indices = append(indices, i)
k := strat[sidx]
sidx++
Pow2k(xR, &cparam, 2*k)
i += int(k)
}
cparam = phi.GenerateCurve(xR)
for k := 0; k < len(points); k++ {
points[k] = phi.EvaluatePoint(&points[k])
}
*phiP = phi.EvaluatePoint(phiP)
*phiQ = phi.EvaluatePoint(phiQ)
*phiR = phi.EvaluatePoint(phiR)
// pop xR from points
*xR, points = points[len(points)-1], points[:len(points)-1]
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
}
}
// Traverses isogeny tree in order to compute xR needed
// for public key generation.
func traverseTreeSharedKeyA(curve *ProjectiveCurveParameters, xR *ProjectivePoint, pub *PublicKey) {
var points = make([]ProjectivePoint, 0, 8)
var indices = make([]int, 0, 8)
var i, sidx int
cparam := CalcCurveParamsEquiv4(curve)
phi := NewIsogeny4()
strat := pub.params.A.IsogenyStrategy
stratSz := len(strat)
for j := 1; j <= stratSz; j++ {
for i <= stratSz-j {
points = append(points, *xR)
indices = append(indices, i)
k := strat[sidx]
sidx++
Pow2k(xR, &cparam, 2*k)
i += int(k)
}
cparam = phi.GenerateCurve(xR)
for k := 0; k < len(points); k++ {
points[k] = phi.EvaluatePoint(&points[k])
}
// pop xR from points
*xR, points = points[len(points)-1], points[:len(points)-1]
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
}
}
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
// for public key generation.
func traverseTreePublicKeyB(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint, pub *PublicKey) {
var points = make([]ProjectivePoint, 0, 8)
var indices = make([]int, 0, 8)
var i, sidx int
cparam := CalcCurveParamsEquiv3(curve)
phi := NewIsogeny3()
strat := pub.params.B.IsogenyStrategy
stratSz := len(strat)
for j := 1; j <= stratSz; j++ {
for i <= stratSz-j {
points = append(points, *xR)
indices = append(indices, i)
k := strat[sidx]
sidx++
Pow3k(xR, &cparam, k)
i += int(k)
}
cparam = phi.GenerateCurve(xR)
for k := 0; k < len(points); k++ {
points[k] = phi.EvaluatePoint(&points[k])
}
*phiP = phi.EvaluatePoint(phiP)
*phiQ = phi.EvaluatePoint(phiQ)
*phiR = phi.EvaluatePoint(phiR)
// pop xR from points
*xR, points = points[len(points)-1], points[:len(points)-1]
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
}
}
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
// for public key generation.
func traverseTreeSharedKeyB(curve *ProjectiveCurveParameters, xR *ProjectivePoint, pub *PublicKey) {
var points = make([]ProjectivePoint, 0, 8)
var indices = make([]int, 0, 8)
var i, sidx int
cparam := CalcCurveParamsEquiv3(curve)
phi := NewIsogeny3()
strat := pub.params.B.IsogenyStrategy
stratSz := len(strat)
for j := 1; j <= stratSz; j++ {
for i <= stratSz-j {
points = append(points, *xR)
indices = append(indices, i)
k := strat[sidx]
sidx++
Pow3k(xR, &cparam, k)
i += int(k)
}
cparam = phi.GenerateCurve(xR)
for k := 0; k < len(points); k++ {
points[k] = phi.EvaluatePoint(&points[k])
}
// pop xR from points
*xR, points = points[len(points)-1], points[:len(points)-1]
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
}
}
// Generate a public key in the 2-torsion group
func publicKeyGenA(prv *PrivateKey) (pub *PublicKey) {
var xPA, xQA, xRA ProjectivePoint
var xPB, xQB, xRB, xR ProjectivePoint
var invZP, invZQ, invZR Fp2
var tmp ProjectiveCurveParameters
pub = NewPublicKey(KeyVariant_SIDH_A)
var phi = NewIsogeny4()
// Load points for A
xPA = ProjectivePoint{X: prv.params.A.Affine_P, Z: prv.params.OneFp2}
xQA = ProjectivePoint{X: prv.params.A.Affine_Q, Z: prv.params.OneFp2}
xRA = ProjectivePoint{X: prv.params.A.Affine_R, Z: prv.params.OneFp2}
// Load points for B
xRB = ProjectivePoint{X: prv.params.B.Affine_R, Z: prv.params.OneFp2}
xQB = ProjectivePoint{X: prv.params.B.Affine_Q, Z: prv.params.OneFp2}
xPB = ProjectivePoint{X: prv.params.B.Affine_P, Z: prv.params.OneFp2}
// Find isogeny kernel
tmp.C = pub.params.OneFp2
xR = ScalarMul3Pt(&tmp, &xPA, &xQA, &xRA, prv.params.A.SecretBitLen, prv.Scalar)
// Reset params object and travers isogeny tree
tmp.C = pub.params.OneFp2
zeroize(&tmp.A)
traverseTreePublicKeyA(&tmp, &xR, &xPB, &xQB, &xRB, pub)
// Secret isogeny
phi.GenerateCurve(&xR)
xPA = phi.EvaluatePoint(&xPB)
xQA = phi.EvaluatePoint(&xQB)
xRA = phi.EvaluatePoint(&xRB)
Fp2Batch3Inv(&xPA.Z, &xQA.Z, &xRA.Z, &invZP, &invZQ, &invZR)
mul(&pub.affine_xP, &xPA.X, &invZP)
mul(&pub.affine_xQ, &xQA.X, &invZQ)
mul(&pub.affine_xQmP, &xRA.X, &invZR)
return
}
// Generate a public key in the 3-torsion group
func publicKeyGenB(prv *PrivateKey) (pub *PublicKey) {
var xPB, xQB, xRB, xR ProjectivePoint
var xPA, xQA, xRA ProjectivePoint
var invZP, invZQ, invZR Fp2
var tmp ProjectiveCurveParameters
pub = NewPublicKey(prv.keyVariant)
var phi = NewIsogeny3()
// Load points for B
xRB = ProjectivePoint{X: prv.params.B.Affine_R, Z: prv.params.OneFp2}
xQB = ProjectivePoint{X: prv.params.B.Affine_Q, Z: prv.params.OneFp2}
xPB = ProjectivePoint{X: prv.params.B.Affine_P, Z: prv.params.OneFp2}
// Load points for A
xPA = ProjectivePoint{X: prv.params.A.Affine_P, Z: prv.params.OneFp2}
xQA = ProjectivePoint{X: prv.params.A.Affine_Q, Z: prv.params.OneFp2}
xRA = ProjectivePoint{X: prv.params.A.Affine_R, Z: prv.params.OneFp2}
tmp.C = pub.params.OneFp2
xR = ScalarMul3Pt(&tmp, &xPB, &xQB, &xRB, prv.params.B.SecretBitLen, prv.Scalar)
tmp.C = pub.params.OneFp2
zeroize(&tmp.A)
traverseTreePublicKeyB(&tmp, &xR, &xPA, &xQA, &xRA, pub)
phi.GenerateCurve(&xR)
xPB = phi.EvaluatePoint(&xPA)
xQB = phi.EvaluatePoint(&xQA)
xRB = phi.EvaluatePoint(&xRA)
Fp2Batch3Inv(&xPB.Z, &xQB.Z, &xRB.Z, &invZP, &invZQ, &invZR)
mul(&pub.affine_xP, &xPB.X, &invZP)
mul(&pub.affine_xQ, &xQB.X, &invZQ)
mul(&pub.affine_xQmP, &xRB.X, &invZR)
return
}
// -----------------------------------------------------------------------------
// Key agreement functions
//
// Establishing shared keys in in 2-torsion group
func deriveSecretA(prv *PrivateKey, pub *PublicKey) []byte {
var sharedSecret = make([]byte, pub.params.SharedSecretSize)
var cparam ProjectiveCurveParameters
var xP, xQ, xQmP ProjectivePoint
var xR ProjectivePoint
var phi = NewIsogeny4()
var jInv Fp2
// Recover curve coefficients
cparam.C = pub.params.OneFp2
RecoverCoordinateA(&cparam, &pub.affine_xP, &pub.affine_xQ, &pub.affine_xQmP)
// Find kernel of the morphism
xP = ProjectivePoint{X: pub.affine_xP, Z: pub.params.OneFp2}
xQ = ProjectivePoint{X: pub.affine_xQ, Z: pub.params.OneFp2}
xQmP = ProjectivePoint{X: pub.affine_xQmP, Z: pub.params.OneFp2}
xR = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, pub.params.A.SecretBitLen, prv.Scalar)
// Traverse isogeny tree
traverseTreeSharedKeyA(&cparam, &xR, pub)
// Calculate j-invariant on isogeneus curve
c := phi.GenerateCurve(&xR)
RecoverCurveCoefficients4(&cparam, &c)
Jinvariant(&cparam, &jInv)
convFp2ToBytes(sharedSecret, &jInv)
return sharedSecret
}
// Establishing shared keys in in 3-torsion group
func deriveSecretB(prv *PrivateKey, pub *PublicKey) []byte {
var sharedSecret = make([]byte, pub.params.SharedSecretSize)
var xP, xQ, xQmP ProjectivePoint
var xR ProjectivePoint
var cparam ProjectiveCurveParameters
var phi = NewIsogeny3()
var jInv Fp2
// Recover curve coefficients
cparam.C = pub.params.OneFp2
RecoverCoordinateA(&cparam, &pub.affine_xP, &pub.affine_xQ, &pub.affine_xQmP)
// Find kernel of the morphism
xP = ProjectivePoint{X: pub.affine_xP, Z: pub.params.OneFp2}
xQ = ProjectivePoint{X: pub.affine_xQ, Z: pub.params.OneFp2}
xQmP = ProjectivePoint{X: pub.affine_xQmP, Z: pub.params.OneFp2}
xR = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, pub.params.B.SecretBitLen, prv.Scalar)
// Traverse isogeny tree
traverseTreeSharedKeyB(&cparam, &xR, pub)
// Calculate j-invariant on isogeneus curve
c := phi.GenerateCurve(&xR)
RecoverCurveCoefficients3(&cparam, &c)
Jinvariant(&cparam, &jInv)
convFp2ToBytes(sharedSecret, &jInv)
return sharedSecret
}
func encrypt(skA *PrivateKey, pkA, pkB *PublicKey, ptext []byte) ([]byte, error) {
var n [40]byte // n can is max 320-bit (see 1.4 of [SIKE])
var ptextLen = len(ptext)
if pkB.keyVariant != KeyVariant_SIKE {
return nil, errors.New("wrong key type")
}
j, err := DeriveSecret(skA, pkB)
if err != nil {
return nil, err
}
hashMac(n[:ptextLen], j, F)
for i, _ := range ptext {
n[i] ^= ptext[i]
}
ret := make([]byte, pkA.Size()+ptextLen)
copy(ret, pkA.Export())
copy(ret[pkA.Size():], n[:ptextLen])
return ret, nil
}
// NewPrivateKey initializes private key.
// Usage of this function guarantees that the object is correctly initialized.
func NewPrivateKey(v KeyVariant) *PrivateKey {
prv := &PrivateKey{key: key{params: &Params, keyVariant: v}}
if (v & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
prv.Scalar = make([]byte, prv.params.A.SecretByteLen)
} else {
prv.Scalar = make([]byte, prv.params.B.SecretByteLen)
}
if v == KeyVariant_SIKE {
prv.S = make([]byte, prv.params.MsgLen)
}
return prv
}
// NewPublicKey initializes public key.
// Usage of this function guarantees that the object is correctly initialized.
func NewPublicKey(v KeyVariant) *PublicKey {
return &PublicKey{key: key{params: &Params, keyVariant: v}}
}
// Import clears content of the public key currently stored in the structure
// and imports key stored in the byte string. Returns error in case byte string
// size is wrong. Doesn't perform any validation.
func (pub *PublicKey) Import(input []byte) error {
if len(input) != pub.Size() {
return errors.New("sidh: input to short")
}
ssSz := pub.params.SharedSecretSize
convBytesToFp2(&pub.affine_xP, input[0:ssSz])
convBytesToFp2(&pub.affine_xQ, input[ssSz:2*ssSz])
convBytesToFp2(&pub.affine_xQmP, input[2*ssSz:3*ssSz])
return nil
}
// Exports currently stored key. In case structure hasn't been filled with key data
// returned byte string is filled with zeros.
func (pub *PublicKey) Export() []byte {
output := make([]byte, pub.params.PublicKeySize)
ssSz := pub.params.SharedSecretSize
convFp2ToBytes(output[0:ssSz], &pub.affine_xP)
convFp2ToBytes(output[ssSz:2*ssSz], &pub.affine_xQ)
convFp2ToBytes(output[2*ssSz:3*ssSz], &pub.affine_xQmP)
return output
}
// Size returns size of the public key in bytes
func (pub *PublicKey) Size() int {
return pub.params.PublicKeySize
}
// Exports currently stored key. In case structure hasn't been filled with key data
// returned byte string is filled with zeros.
func (prv *PrivateKey) Export() []byte {
ret := make([]byte, len(prv.Scalar)+len(prv.S))
copy(ret, prv.S)
copy(ret[len(prv.S):], prv.Scalar)
return ret
}
// Size returns size of the private key in bytes
func (prv *PrivateKey) Size() int {
tmp := len(prv.Scalar)
if prv.keyVariant == KeyVariant_SIKE {
tmp += int(prv.params.MsgLen)
}
return tmp
}
// Import clears content of the private key currently stored in the structure
// and imports key from octet string. In case of SIKE, the random value 'S'
// must be prepended to the value of actual private key (see SIKE spec for details).
// Function doesn't import public key value to PrivateKey object.
func (prv *PrivateKey) Import(input []byte) error {
if len(input) != prv.Size() {
return errors.New("sidh: input to short")
}
copy(prv.S, input[:len(prv.S)])
copy(prv.Scalar, input[len(prv.S):])
return nil
}
// Generates random private key for SIDH or SIKE. Generated value is
// formed as little-endian integer from key-space <2^(e2-1)..2^e2 - 1>
// for KeyVariant_A or <2^(s-1)..2^s - 1>, where s = floor(log_2(3^e3)),
// for KeyVariant_B.
//
// Returns error in case user provided RNG fails.
func (prv *PrivateKey) Generate(rand io.Reader) error {
var err error
var dp *DomainParams
if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
dp = &prv.params.A
} else {
dp = &prv.params.B
}
if prv.keyVariant == KeyVariant_SIKE && err == nil {
_, err = io.ReadFull(rand, prv.S)
}
// Private key generation takes advantage of the fact that keyspace for secret
// key is (0, 2^x - 1), for some possitivite value of 'x' (see SIKE, 1.3.8).
// It means that all bytes in the secret key, but the last one, can take any
// value between <0x00,0xFF>. Similarily for the last byte, but generation
// needs to chop off some bits, to make sure generated value is an element of
// a key-space.
_, err = io.ReadFull(rand, prv.Scalar)
if err != nil {
return err
}
prv.Scalar[len(prv.Scalar)-1] &= (1 << (dp.SecretBitLen % 8)) - 1
// Make sure scalar is SecretBitLen long. SIKE spec says that key
// space starts from 0, but I'm not confortable with having low
// value scalars used for private keys. It is still secrure as per
// table 5.1 in [SIKE].
prv.Scalar[len(prv.Scalar)-1] |= 1 << ((dp.SecretBitLen % 8) - 1)
return err
}
// Generates public key.
//
// Constant time.
func (prv *PrivateKey) GeneratePublicKey() *PublicKey {
if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
return publicKeyGenA(prv)
}
return publicKeyGenB(prv)
}
// Computes a shared secret which is a j-invariant. Function requires that pub has
// different KeyVariant than prv. Length of returned output is 2*ceil(log_2 P)/8),
// where P is a prime defining finite field.
//
// It's important to notice that each keypair must not be used more than once
// to calculate shared secret.
//
// Function may return error. This happens only in case provided input is invalid.
// Constant time for properly initialized private and public key.
func DeriveSecret(prv *PrivateKey, pub *PublicKey) ([]byte, error) {
if (pub == nil) || (prv == nil) {
return nil, errors.New("sidh: invalid arguments")
}
if (pub.keyVariant == prv.keyVariant) || (pub.params.Id != prv.params.Id) {
return nil, errors.New("sidh: public and private are incompatbile")
}
if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
return deriveSecretA(prv, pub), nil
} else {
return deriveSecretB(prv, pub), nil
}
}
// Uses SIKE public key to encrypt plaintext. Requires cryptographically secure PRNG
// Returns ciphertext in case encryption succeeds. Returns error in case PRNG fails
// or wrongly formated input was provided.
func Encrypt(rng io.Reader, pub *PublicKey, ptext []byte) ([]byte, error) {
var ptextLen = len(ptext)
// c1 must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
if ptextLen != (pub.params.KemSize + 8) {
return nil, errors.New("Unsupported message length")
}
skA := NewPrivateKey(KeyVariant_SIDH_A)
err := skA.Generate(rng)
if err != nil {
return nil, err
}
pkA := skA.GeneratePublicKey()
return encrypt(skA, pkA, pub, ptext)
}
// Uses SIKE private key to decrypt ciphertext. Returns plaintext in case
// decryption succeeds or error in case unexptected input was provided.
// Constant time
func Decrypt(prv *PrivateKey, ctext []byte) ([]byte, error) {
var n [40]byte // n can is max 320-bit (see 1.4 of [SIKE])
var c1_len int
var pk_len = prv.params.PublicKeySize
if prv.keyVariant != KeyVariant_SIKE {
return nil, errors.New("wrong key type")
}
// ctext is a concatenation of (pubkey_A || c1=ciphertext)
// it must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
c1_len = len(ctext) - pk_len
if c1_len != (int(prv.params.KemSize) + 8) {
return nil, errors.New("wrong size of cipher text")
}
c0 := NewPublicKey(KeyVariant_SIDH_A)
err := c0.Import(ctext[:pk_len])
if err != nil {
return nil, err
}
j, err := DeriveSecret(prv, c0)
if err != nil {
return nil, err
}
hashMac(n[:c1_len], j, F)
for i, _ := range n[:c1_len] {
n[i] ^= ctext[pk_len+i]
}
return n[:c1_len], nil
}
// Encapsulation receives the public key and generates SIKE ciphertext and shared secret.
// The generated ciphertext is used for authentication.
// The rng must be cryptographically secure PRNG.
// Error is returned in case PRNG fails or wrongly formated input was provided.
func Encapsulate(rng io.Reader, pub *PublicKey) (ctext []byte, secret []byte, err error) {
// Buffer for random, secret message
var ptext = make([]byte, pub.params.MsgLen)
// r = G(ptext||pub)
var r = make([]byte, pub.params.A.SecretByteLen)
// Resulting shared secret
secret = make([]byte, pub.params.KemSize)
// Generate ephemeral value
_, err = io.ReadFull(rng, ptext)
if err != nil {
return nil, nil, err
}
// must be big enough to store ptext+c0+c1
var hmac_key = make([]byte, pub.Size()+2*Params.MsgLen)
copy(hmac_key, ptext)
copy(hmac_key[len(ptext):], pub.Export())
hashMac(r, hmac_key[:len(ptext)+pub.Size()], G)
// Ensure bitlength is not bigger then to 2^e2-1
r[len(r)-1] &= (1 << (pub.params.A.SecretBitLen % 8)) - 1
// (c0 || c1) = Enc(pkA, ptext; r)
skA := NewPrivateKey(KeyVariant_SIDH_A)
err = skA.Import(r)
if err != nil {
return nil, nil, err
}
pkA := skA.GeneratePublicKey()
ctext, err = encrypt(skA, pkA, pub, ptext)
if err != nil {
return nil, nil, err
}
// K = H(ptext||(c0||c1))
copy(hmac_key, ptext)
copy(hmac_key[len(ptext):], ctext)
hashMac(secret, hmac_key[:len(ptext)+len(ctext)], H)
return ctext, secret, nil
}
// Decapsulate given the keypair and ciphertext as inputs, Decapsulate outputs a shared
// secret if plaintext verifies correctly, otherwise function outputs random value.
// Decapsulation may fail in case input is wrongly formated.
// Constant time for properly initialized input.
func Decapsulate(prv *PrivateKey, pub *PublicKey, ctext []byte) ([]byte, error) {
var r = make([]byte, pub.params.A.SecretByteLen)
// Resulting shared secret
var secret = make([]byte, pub.params.KemSize)
var skA = NewPrivateKey(KeyVariant_SIDH_A)
m, err := Decrypt(prv, ctext)
if err != nil {
return nil, err
}
// r' = G(m'||pub)
var hmac_key = make([]byte, pub.Size()+2*Params.MsgLen)
copy(hmac_key, m)
copy(hmac_key[len(m):], pub.Export())
hashMac(r, hmac_key[:len(m)+pub.Size()], G)
// Ensure bitlength is not bigger than 2^e2-1
r[len(r)-1] &= (1 << (pub.params.A.SecretBitLen % 8)) - 1
// Never fails
skA.Import(r)
// Never fails
pkA := skA.GeneratePublicKey()
c0 := pkA.Export()
if subtle.ConstantTimeCompare(c0, ctext[:len(c0)]) == 1 {
copy(hmac_key, m)
} else {
// S is chosen at random when generating a key and unknown to other party. It
// may seem weird, but it's correct. It is important that S is unpredictable
// to other party. Without this check, it is possible to recover a secret, by
// providing series of invalid ciphertexts. It is also important that in case
//
// See more details in "On the security of supersingular isogeny cryptosystems"
// (S. Galbraith, et al., 2016, ePrint #859).
copy(hmac_key, prv.S)
}
copy(hmac_key[len(m):], ctext)
hashMac(secret, hmac_key[:len(m)+len(ctext)], H)
return secret, nil
}