1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-22 15:18:57 +00:00
nobs/dh/csidh/fp511_amd64.s

193 lines
6.9 KiB
ArmAsm
Raw Permalink Normal View History

cSIDH-511: (#26) Implementation of Commutative Supersingular Isogeny Diffie Hellman, based on "A faster way to CSIDH" paper (2018/782). * For fast isogeny calculation, implementation converts a curve from Montgomery to Edwards. All calculations are done on Edwards curve and then converted back to Montgomery. * As multiplication in a field Fp511 is most expensive operation the implementation contains multiple multiplications. It has most performant, assembly implementation which uses BMI2 and ADOX/ADCX instructions for modern CPUs. It also contains slower implementation which will run on older CPUs * Benchmarks (Intel SkyLake): BenchmarkGeneratePrivate 6459 172213 ns/op 0 B/op 0 allocs/op BenchmarkGenerateKeyPair 25 45800356 ns/op 0 B/op 0 allocs/op BenchmarkValidate 297 3915983 ns/op 0 B/op 0 allocs/op BenchmarkValidateRandom 184683 6231 ns/op 0 B/op 0 allocs/op BenchmarkValidateGenerated 25 48481306 ns/op 0 B/op 0 allocs/op BenchmarkDerive 19 60928763 ns/op 0 B/op 0 allocs/op BenchmarkDeriveGenerated 8 137342421 ns/op 0 B/op 0 allocs/op BenchmarkXMul 2311 494267 ns/op 1 B/op 0 allocs/op BenchmarkXAdd 2396754 501 ns/op 0 B/op 0 allocs/op BenchmarkXDbl 2072690 571 ns/op 0 B/op 0 allocs/op BenchmarkIsom 78004 15171 ns/op 0 B/op 0 allocs/op BenchmarkFp512Sub 224635152 5.33 ns/op 0 B/op 0 allocs/op BenchmarkFp512Mul 246633255 4.90 ns/op 0 B/op 0 allocs/op BenchmarkCSwap 233228547 5.10 ns/op 0 B/op 0 allocs/op BenchmarkAddRdc 87348240 12.6 ns/op 0 B/op 0 allocs/op BenchmarkSubRdc 95112787 11.7 ns/op 0 B/op 0 allocs/op BenchmarkModExpRdc 25436 46878 ns/op 0 B/op 0 allocs/op BenchmarkMulBmiAsm 19527573 60.1 ns/op 0 B/op 0 allocs/op BenchmarkMulGeneric 7117650 164 ns/op 0 B/op 0 allocs/op * Go code has very similar performance when compared to C implementation. Results from sidh_torturer (4e2996e12d68364761064341cbe1d1b47efafe23) github.com:henrydcase/sidh-torture/csidh | TestName |Go | C | |------------------|----------|----------| |TestSharedSecret | 57.95774 | 57.91092 | |TestKeyGeneration | 62.23614 | 58.12980 | |TestSharedSecret | 55.28988 | 57.23132 | |TestKeyGeneration | 61.68745 | 58.66396 | |TestSharedSecret | 63.19408 | 58.64774 | |TestKeyGeneration | 62.34022 | 61.62539 | |TestSharedSecret | 62.85453 | 68.74503 | |TestKeyGeneration | 52.58518 | 58.40115 | |TestSharedSecret | 50.77081 | 61.91699 | |TestKeyGeneration | 59.91843 | 61.09266 | |TestSharedSecret | 59.97962 | 62.98151 | |TestKeyGeneration | 64.57525 | 56.22863 | |TestSharedSecret | 56.40521 | 55.77447 | |TestKeyGeneration | 67.85850 | 58.52604 | |TestSharedSecret | 60.54290 | 65.14052 | |TestKeyGeneration | 65.45766 | 58.42823 | On average Go implementation is 2% faster.
2019-11-24 03:39:35 +00:00
// +build amd64,!noasm
#include "textflag.h"
// Multipies 512-bit value by 64-bit value. Uses MULQ instruction to
// multiply 2 64-bit values.
//
// Result: x = (y * z) mod 2^512
//
// Registers used: AX, CX, DX, SI, DI, R8
//
// func mul512(a, b *Fp, c uint64)
TEXT ·mul512(SB), NOSPLIT, $0-24
MOVQ a+0(FP), DI // result
MOVQ b+8(FP), SI // multiplicand
// Check wether to use optimized implementation
CMPB ·hasBMI2(SB), $1
JE mul512_mulx
MOVQ c+16(FP), R10 // 64 bit multiplier, used by MULQ
MOVQ R10, AX; MULQ 0(SI); MOVQ DX, R11; MOVQ AX, 0(DI) //x[0]
MOVQ R10, AX; MULQ 8(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 8(DI) //x[1]
MOVQ R10, AX; MULQ 16(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 16(DI) //x[2]
MOVQ R10, AX; MULQ 24(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 24(DI) //x[3]
MOVQ R10, AX; MULQ 32(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 32(DI) //x[4]
MOVQ R10, AX; MULQ 40(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 40(DI) //x[5]
MOVQ R10, AX; MULQ 48(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 48(DI) //x[6]
MOVQ R10, AX; MULQ 56(SI); ADDQ R11, AX; MOVQ AX, 56(DI) //x[7]
RET
// Optimized for CPUs with BMI2
mul512_mulx:
MOVQ c+16(FP), DX // 64 bit multiplier, used by MULX
MULXQ 0(SI), AX, R10; MOVQ AX, 0(DI) // x[0]
MULXQ 8(SI), AX, R11; ADDQ R10, AX; MOVQ AX, 8(DI) // x[1]
MULXQ 16(SI), AX, R10; ADCQ R11, AX; MOVQ AX, 16(DI) // x[2]
MULXQ 24(SI), AX, R11; ADCQ R10, AX; MOVQ AX, 24(DI) // x[3]
MULXQ 32(SI), AX, R10; ADCQ R11, AX; MOVQ AX, 32(DI) // x[4]
MULXQ 40(SI), AX, R11; ADCQ R10, AX; MOVQ AX, 40(DI) // x[5]
MULXQ 48(SI), AX, R10; ADCQ R11, AX; MOVQ AX, 48(DI) // x[6]
MULXQ 56(SI), AX, R11; ADCQ R10, AX; MOVQ AX, 56(DI) // x[7]
RET
// Multipies 512-bit value by 64-bit value and returns 576-bit result. Uses MULQ instruction to
// multiply 2 64-bit values. Returns 576-bit result.
//
// Result: x = (y * z)
//
// Registers used: AX, CX, DX, SI, DI, R8
//
// func mul576(a, b *Fp, c uint64)
TEXT ·mul576(SB), NOSPLIT, $0-24
MOVQ a+0(FP), DI // result
MOVQ b+8(FP), SI // multiplicand
MOVQ c+16(FP), R10 // 64 bit multiplier, used by MULQ
MOVQ R10, AX; MULQ 0(SI); MOVQ DX, R11; MOVQ AX, 0(DI) //x[0]
MOVQ R10, AX; MULQ 8(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 8(DI) //x[1]
MOVQ R10, AX; MULQ 16(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 16(DI) //x[2]
MOVQ R10, AX; MULQ 24(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 24(DI) //x[3]
MOVQ R10, AX; MULQ 32(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 32(DI) //x[4]
MOVQ R10, AX; MULQ 40(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 40(DI) //x[5]
MOVQ R10, AX; MULQ 48(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 48(DI) //x[6]
MOVQ R10, AX; MULQ 56(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ AX, 56(DI) //x[7]
MOVQ DX, 64(DI) //x[8]
RET
TEXT ·cswap512(SB),NOSPLIT,$0-17
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVBLZX choice+16(FP), AX // AL = 0 or 1
// Make AX, so that either all bits are set or non
// AX = 0 or 1
NEGQ AX
// Fill xmm15. After this step first half of XMM15 is
// just zeros and second half is whatever in AX
MOVQ AX, X15
// Copy lower double word everywhere else. So that
// XMM15=AL|AL|AL|AL. As AX has either all bits set
// or non result will be that XMM15 has also either
// all bits set or non of them.
PSHUFD $0, X15, X15
#ifndef CSWAP_BLOCK
#define CSWAP_BLOCK(idx) \
MOVOU (idx*16)(DI), X0 \
MOVOU (idx*16)(SI), X1 \
\ // X2 = mask & (X0 ^ X1)
MOVO X1, X2 \
PXOR X0, X2 \
PAND X15, X2 \
\
PXOR X2, X0 \
PXOR X2, X1 \
\
MOVOU X0, (idx*16)(DI) \
MOVOU X1, (idx*16)(SI)
#endif
CSWAP_BLOCK(0)
CSWAP_BLOCK(1)
CSWAP_BLOCK(2)
CSWAP_BLOCK(3)
RET
// mulAsm implements montgomery multiplication interleaved with
// montgomery reduction. It uses MULX and ADCX/ADOX instructions.
// Implementation specific to 511-bit prime 'p'
//
// func mulBmiAsm(res, x, y *fp)
TEXT ·mulBmiAsm(SB),NOSPLIT,$8-24
MOVQ x+8(FP), DI // multiplicand
MOVQ y+16(FP), SI // multiplier
XORQ R8, R8
XORQ R9, R9
XORQ R10, R10
XORQ R11, R11
XORQ R12, R12
XORQ R13, R13
XORQ R14, R14
XORQ R15, R15
MOVQ BP, 0(SP)
XORQ BP, BP
// Uses BMI2 (MULX)
#ifdef MULS_MULX_512
#undef MULS_MULX_512
#endif
#define MULS_MULX_512(idx, r0, r1, r2, r3, r4, r5, r6, r7, r8) \
\ // Reduction step
MOVQ ( 0)(SI), DX \
MULXQ ( 8*idx)(DI), DX, CX \
ADDQ r0, DX \
MULXQ ·pNegInv(SB), DX, CX \
\
XORQ AX, AX \
MULXQ ·p+ 0(SB), AX, BX; ; ADOXQ AX, r0 \
MULXQ ·p+ 8(SB), AX, CX; ADCXQ BX, r1; ADOXQ AX, r1 \
MULXQ ·p+16(SB), AX, BX; ADCXQ CX, r2; ADOXQ AX, r2 \
MULXQ ·p+24(SB), AX, CX; ADCXQ BX, r3; ADOXQ AX, r3 \
MULXQ ·p+32(SB), AX, BX; ADCXQ CX, r4; ADOXQ AX, r4 \
MULXQ ·p+40(SB), AX, CX; ADCXQ BX, r5; ADOXQ AX, r5 \
MULXQ ·p+48(SB), AX, BX; ADCXQ CX, r6; ADOXQ AX, r6 \
MULXQ ·p+56(SB), AX, CX; ADCXQ BX, r7; ADOXQ AX, r7 \
MOVQ $0, AX ; ADCXQ CX, r8; ADOXQ AX, r8 \
\ // Multiplication step
MOVQ (8*idx)(DI), DX \
\
XORQ AX, AX \
MULXQ ( 0)(SI), AX, BX; ADOXQ AX, r0 \
MULXQ ( 8)(SI), AX, CX; ADCXQ BX, r1; ADOXQ AX, r1 \
MULXQ (16)(SI), AX, BX; ADCXQ CX, r2; ADOXQ AX, r2 \
MULXQ (24)(SI), AX, CX; ADCXQ BX, r3; ADOXQ AX, r3 \
MULXQ (32)(SI), AX, BX; ADCXQ CX, r4; ADOXQ AX, r4 \
MULXQ (40)(SI), AX, CX; ADCXQ BX, r5; ADOXQ AX, r5 \
MULXQ (48)(SI), AX, BX; ADCXQ CX, r6; ADOXQ AX, r6 \
MULXQ (56)(SI), AX, CX; ADCXQ BX, r7; ADOXQ AX, r7 \
MOVQ $0, AX ; ADCXQ CX, r8; ADOXQ AX, r8
MULS_MULX_512(0, R8, R9, R10, R11, R12, R13, R14, R15, BP)
MULS_MULX_512(1, R9, R10, R11, R12, R13, R14, R15, BP, R8)
MULS_MULX_512(2, R10, R11, R12, R13, R14, R15, BP, R8, R9)
MULS_MULX_512(3, R11, R12, R13, R14, R15, BP, R8, R9, R10)
MULS_MULX_512(4, R12, R13, R14, R15, BP, R8, R9, R10, R11)
MULS_MULX_512(5, R13, R14, R15, BP, R8, R9, R10, R11, R12)
MULS_MULX_512(6, R14, R15, BP, R8, R9, R10, R11, R12, R13)
MULS_MULX_512(7, R15, BP, R8, R9, R10, R11, R12, R13, R14)
#undef MULS_MULX_512
MOVQ res+0(FP), DI
MOVQ BP, ( 0)(DI)
MOVQ R8, ( 8)(DI)
MOVQ R9, (16)(DI)
MOVQ R10, (24)(DI)
MOVQ R11, (32)(DI)
MOVQ R12, (40)(DI)
MOVQ R13, (48)(DI)
MOVQ R14, (56)(DI)
MOVQ 0(SP), BP
// NOW DI needs to be reduced if > p
RET