1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-30 02:41:20 +00:00
nobs/dh/sidh/internal/p503/fp2_test.go

246 lines
5.4 KiB
Go
Raw Permalink Normal View History

2020-05-14 01:02:32 +01:00
// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots.
package p503
import (
"math/rand"
"reflect"
"testing"
"testing/quick"
"github.com/henrydcase/nobs/dh/sidh/common"
2020-05-14 01:02:32 +01:00
)
type testParams struct {
Point common.ProjectivePoint
Cparam common.ProjectiveCurveParameters
ExtElem common.Fp2
}
// Returns true if lhs = rhs. Takes variable time.
func vartimeEqFp2(lhs, rhs *common.Fp2) bool {
a := *lhs
b := *rhs
modP503(&a.A)
modP503(&a.B)
modP503(&b.A)
modP503(&b.B)
eq := true
for i := 0; i < FpWords && eq; i++ {
eq = eq && (a.A[i] == b.A[i])
eq = eq && (a.B[i] == b.B[i])
}
return eq
}
func (testParams) generateFp2(rand *rand.Rand) common.Fp2 {
// Generation strategy: low limbs taken from [0,2^64); high limb
// taken from smaller range
//
// Size hint is ignored since all elements are fixed size.
//
// Field elements taken in range [0,2p). Emulate this by capping
// the high limb by the top digit of 2*p-1:
//
// sage: (2*p-1).digits(2^64)[-1]
//
// This still allows generating values >= 2p, but hopefully that
// excess is OK (and if it's not, we'll find out, because it's for
// testing...)
highLimb := rand.Uint64() % P503x2[FpWords-1]
fpElementGen := func() (fp common.Fp) {
for i := 0; i < (FpWords - 1); i++ {
fp[i] = rand.Uint64()
}
fp[FpWords-1] = highLimb
return fp
}
return common.Fp2{A: fpElementGen(), B: fpElementGen()}
}
func (c testParams) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.ValueOf(
testParams{
common.ProjectivePoint{
X: c.generateFp2(rand),
Z: c.generateFp2(rand),
},
common.ProjectiveCurveParameters{
A: c.generateFp2(rand),
C: c.generateFp2(rand),
},
c.generateFp2(rand),
})
}
func TestOne(t *testing.T) {
var tmp common.Fp2
mul(&tmp, &params.OneFp2, &params.A.AffineP)
if !vartimeEqFp2(&tmp, &params.A.AffineP) {
t.Error("Not equal 1")
}
}
func TestFp2ToBytesRoundTrip(t *testing.T) {
roundTrips := func(x testParams) bool {
var xBytes = make([]byte, 2*params.Bytelen)
var xPrime common.Fp2
common.Fp2ToBytes(xBytes[:], &x.ExtElem, params.Bytelen)
common.BytesToFp2(&xPrime, xBytes[:], params.Bytelen)
return vartimeEqFp2(&xPrime, &x.ExtElem)
}
if err := quick.Check(roundTrips, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2MulDistributesOverAdd(t *testing.T) {
mulDistributesOverAdd := func(x, y, z testParams) bool {
// Compute t1 = (x+y)*z
t1 := new(common.Fp2)
add(t1, &x.ExtElem, &y.ExtElem)
mul(t1, t1, &z.ExtElem)
// Compute t2 = x*z + y*z
t2 := new(common.Fp2)
t3 := new(common.Fp2)
mul(t2, &x.ExtElem, &z.ExtElem)
mul(t3, &y.ExtElem, &z.ExtElem)
add(t2, t2, t3)
return vartimeEqFp2(t1, t2)
}
if err := quick.Check(mulDistributesOverAdd, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2MulIsAssociative(t *testing.T) {
isAssociative := func(x, y, z testParams) bool {
// Compute t1 = (x*y)*z
t1 := new(common.Fp2)
mul(t1, &x.ExtElem, &y.ExtElem)
mul(t1, t1, &z.ExtElem)
// Compute t2 = (y*z)*x
t2 := new(common.Fp2)
mul(t2, &y.ExtElem, &z.ExtElem)
mul(t2, t2, &x.ExtElem)
return vartimeEqFp2(t1, t2)
}
if err := quick.Check(isAssociative, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2SquareMatchesMul(t *testing.T) {
sqrMatchesMul := func(x testParams) bool {
// Compute t1 = (x*x)
t1 := new(common.Fp2)
mul(t1, &x.ExtElem, &x.ExtElem)
// Compute t2 = x^2
t2 := new(common.Fp2)
sqr(t2, &x.ExtElem)
return vartimeEqFp2(t1, t2)
}
if err := quick.Check(sqrMatchesMul, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2Inv(t *testing.T) {
inverseIsCorrect := func(x testParams) bool {
z := new(common.Fp2)
inv(z, &x.ExtElem)
// Now z = (1/x), so (z * x) * x == x
mul(z, z, &x.ExtElem)
mul(z, z, &x.ExtElem)
return vartimeEqFp2(z, &x.ExtElem)
}
// This is more expensive; run fewer tests
var quickCheckConfig = &quick.Config{MaxCount: (1 << 11)}
if err := quick.Check(inverseIsCorrect, quickCheckConfig); err != nil {
t.Error(err)
}
}
func TestFp2Batch3Inv(t *testing.T) {
batchInverseIsCorrect := func(x1, x2, x3 testParams) bool {
var x1Inv, x2Inv, x3Inv common.Fp2
inv(&x1Inv, &x1.ExtElem)
inv(&x2Inv, &x2.ExtElem)
inv(&x3Inv, &x3.ExtElem)
var y1, y2, y3 common.Fp2
Fp2Batch3Inv(&x1.ExtElem, &x2.ExtElem, &x3.ExtElem, &y1, &y2, &y3)
return (vartimeEqFp2(&x1Inv, &y1) && vartimeEqFp2(&x2Inv, &y2) && vartimeEqFp2(&x3Inv, &y3))
}
// This is more expensive; run fewer tests
var quickCheckConfig = &quick.Config{MaxCount: (1 << 8)}
if err := quick.Check(batchInverseIsCorrect, quickCheckConfig); err != nil {
t.Error(err)
}
}
func BenchmarkFp2Mul(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
mul(w, z, z)
}
}
func BenchmarkFp2Inv(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
inv(w, z)
}
}
func BenchmarkFp2Square(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
sqr(w, z)
}
}
func BenchmarkFp2Add(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
add(w, z, z)
}
}
func BenchmarkFp2Sub(b *testing.B) {
z := &common.Fp2{A: bench_x, B: bench_y}
w := new(common.Fp2)
for n := 0; n < b.N; n++ {
sub(w, z, z)
}
}