1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-22 15:18:57 +00:00
nobs/hash/sm3/compress.go

255 lines
8.9 KiB
Go
Raw Permalink Normal View History

2018-06-01 00:02:53 +01:00
package sm3
func rotl32(count uint32, val uint32) uint32 {
2018-06-23 16:48:54 +01:00
return (val << count) | (val >> (32 - count))
2018-06-01 00:02:53 +01:00
}
// compression
func p0(X uint32) uint32 {
2018-06-23 16:48:54 +01:00
return X ^ rotl32(9, X) ^ rotl32(17, X)
2018-06-01 00:02:53 +01:00
}
// expansion
func p1(X uint32) uint32 {
2018-06-23 16:48:54 +01:00
return X ^ rotl32(15, X) ^ rotl32(23, X)
2018-06-01 00:02:53 +01:00
}
// Choose bitwise between A or B controlled by C (gg1). A if C=1 otherwise B
// Optimized as per, "Hackers Delight" (7-1, MUX operation), can be used
// to reduce number of operations.
func ch(M uint32, A uint32, B uint32) uint32 {
return ((A ^ B) & M) ^ B
2018-06-01 00:02:53 +01:00
}
// Majority function (ff1) - takes the majority value as the final result. If two
// or three of the variables are 1, then the result is 1, otherwise 0.
func maj(X uint32, Y uint32, Z uint32) uint32 {
// Y^Z works as a mask. If mask is 0, then majority is dictated by
// value of either Y or Z (doesn't matter, as they are the same, but we
// don't know if result is 0 or 1). Otherwise Y!=Z and results is
// going to dicated by X.
return ch(Y^Z, X, Y)
2018-06-01 00:02:53 +01:00
}
func r1(
2018-06-23 16:48:54 +01:00
A uint32, B *uint32, C uint32, D *uint32, E uint32, F *uint32,
G uint32, H *uint32, TJ uint32, Wi uint32, Wj uint32) {
A12 := rotl32(12, A)
SS1 := rotl32(7, A12+E+TJ)
TT1 := (A ^ *B ^ C) + *D + (SS1 ^ A12) + Wj
TT2 := (E ^ *F ^ G) + *H + SS1 + Wi
*B = rotl32(9, *B)
*D = TT1
*F = rotl32(19, *F)
*H = p0(TT2)
2018-06-01 00:02:53 +01:00
}
func r2(
2018-06-23 16:48:54 +01:00
A uint32, B *uint32, C uint32, D *uint32, E uint32, F *uint32,
G uint32, H *uint32, TJ uint32, Wi uint32, Wj uint32) {
A12 := rotl32(12, A)
SS1 := rotl32(7, A12+E+TJ)
TT1 := maj(A, *B, C) + *D + (SS1 ^ A12) + Wj
TT2 := ch(E, *F, G) + *H + SS1 + Wi
2018-06-23 16:48:54 +01:00
*B = rotl32(9, *B)
*D = TT1
*F = rotl32(19, *F)
*H = p0(TT2)
2018-06-01 00:02:53 +01:00
}
func sm3e(W0 uint32, W7 uint32, W13 uint32, W3 uint32, W10 uint32) uint32 {
2018-06-23 16:48:54 +01:00
return p1(W0^W7^rotl32(15, W13)) ^ rotl32(7, W3) ^ W10
2018-06-01 00:02:53 +01:00
}
func loadBe32(x []byte) uint32 {
2018-06-23 16:48:54 +01:00
return uint32(x[3]) | (uint32(x[2]) << 8) | (uint32(x[1]) << 16) | (uint32(x[0]) << 24)
2018-06-01 00:02:53 +01:00
}
func store64Be(val []byte, x uint64) {
2018-06-23 16:48:54 +01:00
val[0] = byte(x >> 56)
val[1] = byte(x >> 48)
val[2] = byte(x >> 40)
val[3] = byte(x >> 32)
val[4] = byte(x >> 24)
val[5] = byte(x >> 16)
val[6] = byte(x >> 8)
val[7] = byte(x >> 0)
2018-06-01 00:02:53 +01:00
}
func store32Be(val []byte, x uint32) {
2018-06-23 16:48:54 +01:00
val[0] = byte(x >> 24)
val[1] = byte(x >> 16)
val[2] = byte(x >> 8)
val[3] = byte(x >> 0)
2018-06-01 00:02:53 +01:00
}
func (d *digest) compress(input []byte, blocks int) {
2018-06-23 16:48:54 +01:00
A := d.h[0]
B := d.h[1]
C := d.h[2]
D := d.h[3]
E := d.h[4]
F := d.h[5]
G := d.h[6]
H := d.h[7]
for i := 0; i < blocks; i++ {
next64Block := input[i*64:]
W00 := loadBe32(next64Block[0:])
W01 := loadBe32(next64Block[4:])
W02 := loadBe32(next64Block[8:])
W03 := loadBe32(next64Block[12:])
W04 := loadBe32(next64Block[16:])
W05 := loadBe32(next64Block[20:])
W06 := loadBe32(next64Block[24:])
W07 := loadBe32(next64Block[28:])
W08 := loadBe32(next64Block[32:])
W09 := loadBe32(next64Block[36:])
W10 := loadBe32(next64Block[40:])
W11 := loadBe32(next64Block[44:])
W12 := loadBe32(next64Block[48:])
W13 := loadBe32(next64Block[52:])
W14 := loadBe32(next64Block[56:])
W15 := loadBe32(next64Block[60:])
r1(A, &B, C, &D, E, &F, G, &H, 0x79CC4519, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r1(D, &A, B, &C, H, &E, F, &G, 0xF3988A32, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r1(C, &D, A, &B, G, &H, E, &F, 0xE7311465, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r1(B, &C, D, &A, F, &G, H, &E, 0xCE6228CB, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r1(A, &B, C, &D, E, &F, G, &H, 0x9CC45197, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r1(D, &A, B, &C, H, &E, F, &G, 0x3988A32F, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r1(C, &D, A, &B, G, &H, E, &F, 0x7311465E, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r1(B, &C, D, &A, F, &G, H, &E, 0xE6228CBC, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r1(A, &B, C, &D, E, &F, G, &H, 0xCC451979, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r1(D, &A, B, &C, H, &E, F, &G, 0x988A32F3, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r1(C, &D, A, &B, G, &H, E, &F, 0x311465E7, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r1(B, &C, D, &A, F, &G, H, &E, 0x6228CBCE, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r1(A, &B, C, &D, E, &F, G, &H, 0xC451979C, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r1(D, &A, B, &C, H, &E, F, &G, 0x88A32F39, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r1(C, &D, A, &B, G, &H, E, &F, 0x11465E73, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r1(B, &C, D, &A, F, &G, H, &E, 0x228CBCE6, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x9D8A7A87, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0x3B14F50F, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0x7629EA1E, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xEC53D43C, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xD8A7A879, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r2(D, &A, B, &C, H, &E, F, &G, 0xB14F50F3, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r2(C, &D, A, &B, G, &H, E, &F, 0x629EA1E7, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r2(B, &C, D, &A, F, &G, H, &E, 0xC53D43CE, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r2(A, &B, C, &D, E, &F, G, &H, 0x8A7A879D, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r2(D, &A, B, &C, H, &E, F, &G, 0x14F50F3B, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r2(C, &D, A, &B, G, &H, E, &F, 0x29EA1E76, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r2(B, &C, D, &A, F, &G, H, &E, 0x53D43CEC, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r2(A, &B, C, &D, E, &F, G, &H, 0xA7A879D8, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r2(D, &A, B, &C, H, &E, F, &G, 0x4F50F3B1, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r2(C, &D, A, &B, G, &H, E, &F, 0x9EA1E762, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r2(B, &C, D, &A, F, &G, H, &E, 0x3D43CEC5, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x7A879D8A, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0xF50F3B14, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0xEA1E7629, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xD43CEC53, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xA879D8A7, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r2(D, &A, B, &C, H, &E, F, &G, 0x50F3B14F, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r2(C, &D, A, &B, G, &H, E, &F, 0xA1E7629E, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r2(B, &C, D, &A, F, &G, H, &E, 0x43CEC53D, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r2(A, &B, C, &D, E, &F, G, &H, 0x879D8A7A, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r2(D, &A, B, &C, H, &E, F, &G, 0x0F3B14F5, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r2(C, &D, A, &B, G, &H, E, &F, 0x1E7629EA, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r2(B, &C, D, &A, F, &G, H, &E, 0x3CEC53D4, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r2(A, &B, C, &D, E, &F, G, &H, 0x79D8A7A8, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r2(D, &A, B, &C, H, &E, F, &G, 0xF3B14F50, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r2(C, &D, A, &B, G, &H, E, &F, 0xE7629EA1, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r2(B, &C, D, &A, F, &G, H, &E, 0xCEC53D43, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x9D8A7A87, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0x3B14F50F, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0x7629EA1E, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xEC53D43C, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xD8A7A879, W04, W04^W08)
r2(D, &A, B, &C, H, &E, F, &G, 0xB14F50F3, W05, W05^W09)
r2(C, &D, A, &B, G, &H, E, &F, 0x629EA1E7, W06, W06^W10)
r2(B, &C, D, &A, F, &G, H, &E, 0xC53D43CE, W07, W07^W11)
r2(A, &B, C, &D, E, &F, G, &H, 0x8A7A879D, W08, W08^W12)
r2(D, &A, B, &C, H, &E, F, &G, 0x14F50F3B, W09, W09^W13)
r2(C, &D, A, &B, G, &H, E, &F, 0x29EA1E76, W10, W10^W14)
r2(B, &C, D, &A, F, &G, H, &E, 0x53D43CEC, W11, W11^W15)
r2(A, &B, C, &D, E, &F, G, &H, 0xA7A879D8, W12, W12^W00)
r2(D, &A, B, &C, H, &E, F, &G, 0x4F50F3B1, W13, W13^W01)
r2(C, &D, A, &B, G, &H, E, &F, 0x9EA1E762, W14, W14^W02)
r2(B, &C, D, &A, F, &G, H, &E, 0x3D43CEC5, W15, W15^W03)
d.h[0] ^= A
d.h[1] ^= B
d.h[2] ^= C
d.h[3] ^= D
d.h[4] ^= E
d.h[5] ^= F
d.h[6] ^= G
d.h[7] ^= H
A = d.h[0]
B = d.h[1]
C = d.h[2]
D = d.h[3]
E = d.h[4]
F = d.h[5]
G = d.h[6]
H = d.h[7]
}
2018-06-01 00:02:53 +01:00
}