1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-22 23:28:57 +00:00
nobs/kem/sike/sike.go

220 lines
6.2 KiB
Go
Raw Normal View History

2018-07-23 23:18:38 +01:00
// [SIKE] http://www.sike.org/files/SIDH-spec.pdf
// [REF] https://github.com/Microsoft/PQCrypto-SIDH
package sike
import (
"crypto/subtle"
"errors"
"io"
// TODO: Use implementation from xcrypto, once PR below merged
// https://go-review.googlesource.com/c/crypto/+/111281/
. "github.com/henrydcase/nobs/dh/sidh"
cshake "github.com/henrydcase/nobs/hash/sha3"
)
// Constants used for cSHAKE customization
// Those values are different than in [SIKE] - they are encoded on 16bits. This is
// done in order for implementation to be compatible with [REF] and test vectors.
var G = []byte{0x00, 0x00}
var H = []byte{0x01, 0x00}
var F = []byte{0x02, 0x00}
// Generates cShake-256 sum
func cshakeSum(out, in, S []byte) {
h := cshake.NewCShake256(nil, S)
h.Write(in)
h.Read(out)
}
func encrypt(skA *PrivateKey, pkA, pkB *PublicKey, ptext []byte) ([]byte, error) {
2018-07-31 20:21:32 +01:00
var n [40]byte // n can is max 320-bit (see 1.4 of [SIKE])
2018-07-23 23:18:38 +01:00
var ptextLen = len(ptext)
if pkB.Variant() != KeyVariant_SIKE {
return nil, errors.New("wrong key type")
}
j, err := DeriveSecret(skA, pkB)
if err != nil {
return nil, err
}
2018-07-31 20:21:32 +01:00
cshakeSum(n[:ptextLen], j, F)
2018-07-23 23:18:38 +01:00
for i, _ := range ptext {
2018-07-31 20:21:32 +01:00
n[i] ^= ptext[i]
2018-07-23 23:18:38 +01:00
}
ret := make([]byte, pkA.Size()+ptextLen)
copy(ret, pkA.Export())
2018-07-31 20:21:32 +01:00
copy(ret[pkA.Size():], n[:ptextLen])
2018-07-23 23:18:38 +01:00
return ret, nil
}
// -----------------------------------------------------------------------------
// PKE interface
//
// Uses SIKE public key to encrypt plaintext. Requires cryptographically secure PRNG
// Returns ciphertext in case encryption succeeds. Returns error in case PRNG fails
// or wrongly formated input was provided.
func Encrypt(rng io.Reader, pub *PublicKey, ptext []byte) ([]byte, error) {
var params = pub.Params()
var ptextLen = uint(len(ptext))
// c1 must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
if ptextLen != (params.KemSize + 8) {
return nil, errors.New("Unsupported message length")
}
skA := NewPrivateKey(params.Id, KeyVariant_SIDH_A)
err := skA.Generate(rng)
if err != nil {
return nil, err
}
pkA, _ := GeneratePublicKey(skA) // Never fails
return encrypt(skA, pkA, pub, ptext)
}
// Uses SIKE private key to decrypt ciphertext. Returns plaintext in case
// decryption succeeds or error in case unexptected input was provided.
2018-07-31 20:21:32 +01:00
// Constant time
2018-07-23 23:18:38 +01:00
func Decrypt(prv *PrivateKey, ctext []byte) ([]byte, error) {
var params = prv.Params()
2018-07-31 20:21:32 +01:00
var n [40]byte // n can is max 320-bit (see 1.4 of [SIKE])
2018-07-23 23:18:38 +01:00
var c1_len int
var pk_len = params.PublicKeySize
if prv.Variant() != KeyVariant_SIKE {
return nil, errors.New("wrong key type")
}
// ctext is a concatenation of (pubkey_A || c1=ciphertext)
// it must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
c1_len = len(ctext) - pk_len
if c1_len != (int(params.KemSize) + 8) {
return nil, errors.New("wrong size of cipher text")
}
c0 := NewPublicKey(params.Id, KeyVariant_SIDH_A)
err := c0.Import(ctext[:pk_len])
if err != nil {
return nil, err
}
j, err := DeriveSecret(prv, c0)
if err != nil {
return nil, err
}
2018-07-31 20:21:32 +01:00
cshakeSum(n[:c1_len], j, F)
for i, _ := range n[:c1_len] {
n[i] ^= ctext[pk_len+i]
2018-07-23 23:18:38 +01:00
}
2018-07-31 20:21:32 +01:00
return n[:c1_len], nil
2018-07-23 23:18:38 +01:00
}
// -----------------------------------------------------------------------------
// KEM interface
//
// Encapsulation receives the public key and generates SIKE ciphertext and shared secret.
// The generated ciphertext is used for authentication.
// The rng must be cryptographically secure PRNG.
// Error is returned in case PRNG fails or wrongly formated input was provided.
func Encapsulate(rng io.Reader, pub *PublicKey) (ctext []byte, secret []byte, err error) {
var params = pub.Params()
// Buffer for random, secret message
var ptext = make([]byte, params.MsgLen)
// r = G(ptext||pub)
var r = make([]byte, params.SecretKeySize)
// Resulting shared secret
secret = make([]byte, params.KemSize)
// Generate ephemeral value
_, err = io.ReadFull(rng, ptext)
if err != nil {
return nil, nil, err
}
h := cshake.NewCShake256(nil, G)
h.Write(ptext)
h.Write(pub.Export())
h.Read(r)
// cSHAKE256 implementation is byte oriented. Ensure bitlength is less then to E2
r[len(r)-1] &= params.A.MaskBytes[0]
r[len(r)-2] &= params.A.MaskBytes[1] // clear high bits, so scalar < 2*732
// (c0 || c1) = Enc(pkA, ptext; r)
skA := NewPrivateKey(params.Id, KeyVariant_SIDH_A)
err = skA.Import(r)
if err != nil {
return nil, nil, err
}
pkA, _ := GeneratePublicKey(skA) // Never fails
ctext, err = encrypt(skA, pkA, pub, ptext)
if err != nil {
return nil, nil, err
}
// K = H(ptext||(c0||c1))
h = cshake.NewCShake256(nil, H)
h.Write(ptext)
h.Write(ctext)
h.Read(secret)
return ctext, secret, nil
}
// Decapsulate given the keypair and ciphertext as inputs, Decapsulate outputs a shared
// secret if plaintext verifies correctly, otherwise function outputs random value.
// Decapsulation may fail in case input is wrongly formated.
2018-07-31 20:21:32 +01:00
// Constant time for properly initialized input.
func Decapsulate(prv *PrivateKey, pub *PublicKey, ctext []byte) ([]byte, error) {
2018-07-23 23:18:38 +01:00
var params = pub.Params()
var r = make([]byte, params.SecretKeySize)
// Resulting shared secret
var secret = make([]byte, params.KemSize)
var skA = NewPrivateKey(params.Id, KeyVariant_SIDH_A)
m, err := Decrypt(prv, ctext)
if err != nil {
return nil, err
}
// r' = G(m'||pub)
h := cshake.NewCShake256(nil, G)
h.Write(m)
h.Write(pub.Export())
h.Read(r)
// cSHAKE256 implementation is byte oriented: Ensure bitlength is equal to E2
r[len(r)-1] &= params.A.MaskBytes[0]
r[len(r)-2] &= params.A.MaskBytes[1] // clear high bits, so scalar < 2*732
// Never fails
skA.Import(r)
2018-07-23 23:18:38 +01:00
2018-07-31 20:21:32 +01:00
// Never fails
pkA, _ := GeneratePublicKey(skA)
2018-07-23 23:18:38 +01:00
c0 := pkA.Export()
h = cshake.NewCShake256(nil, H)
if subtle.ConstantTimeCompare(c0, ctext[:len(c0)]) == 1 {
h.Write(m)
} else {
// S is chosen at random when generating a key and unknown to other party. It
// may seem weird, but it's correct. It is important that S is unpredictable
// to other party. Without this check, it is possible to recover a secret, by
// providing series of invalid ciphertexts. It is also important that in case
//
// See more details in "On the security of supersingular isogeny cryptosystems"
// (S. Galbraith, et al., 2016, ePrint #859).
h.Write(prv.S)
}
h.Write(ctext)
h.Read(secret)
return secret, nil
}