1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-26 00:51:22 +00:00
This commit is contained in:
Henry Case 2018-06-23 16:48:54 +01:00
parent 8cf7cfdc8d
commit 4b06c1b314
5 changed files with 876 additions and 799 deletions

View File

@ -1,246 +1,245 @@
package sm3
func rotl32(count uint32, val uint32) uint32 {
return (val << count) | (val >> (32 - count))
return (val << count) | (val >> (32 - count))
}
// compression
func p0(X uint32) uint32 {
return X ^ rotl32(9, X) ^ rotl32(17, X)
return X ^ rotl32(9, X) ^ rotl32(17, X)
}
// expansion
func p1(X uint32) uint32 {
return X ^ rotl32(15, X) ^ rotl32(23, X)
return X ^ rotl32(15, X) ^ rotl32(23, X)
}
func ff1(X uint32, Y uint32, Z uint32) uint32 {
return (X & Y) | ((X | Y) & Z)
return (X & Y) | ((X | Y) & Z)
}
func gg1(X uint32, Y uint32, Z uint32) uint32 {
return (X & Y) ^ ((^X) & Z) // Can be also (Z ^ (X & (Y ^ Z)))
return (X & Y) ^ ((^X) & Z) // Can be also (Z ^ (X & (Y ^ Z)))
}
func r1(
A uint32, B *uint32, C uint32, D *uint32, E uint32, F *uint32,
G uint32, H *uint32, TJ uint32, Wi uint32, Wj uint32) {
A uint32, B *uint32, C uint32, D *uint32, E uint32, F *uint32,
G uint32, H *uint32, TJ uint32, Wi uint32, Wj uint32) {
A12 := rotl32(12, A)
SS1 := rotl32(7, A12+E+TJ)
TT1 := (A ^ *B ^ C) + *D + (SS1 ^ A12) + Wj
TT2 := (E ^ *F ^ G) + *H + SS1 + Wi
A12 := rotl32(12, A)
SS1 := rotl32(7, A12+E+TJ)
TT1 := (A ^ *B ^ C) + *D + (SS1 ^ A12) + Wj
TT2 := (E ^ *F ^ G) + *H + SS1 + Wi
*B = rotl32(9, *B)
*D = TT1
*F = rotl32(19, *F)
*H = p0(TT2)
*B = rotl32(9, *B)
*D = TT1
*F = rotl32(19, *F)
*H = p0(TT2)
}
func r2(
A uint32, B *uint32, C uint32, D *uint32, E uint32, F *uint32,
G uint32, H *uint32, TJ uint32, Wi uint32, Wj uint32) {
A uint32, B *uint32, C uint32, D *uint32, E uint32, F *uint32,
G uint32, H *uint32, TJ uint32, Wi uint32, Wj uint32) {
A12 := rotl32(12, A)
SS1 := rotl32(7, A12+E+TJ)
TT1 := ff1(A, *B, C) + *D + (SS1 ^ A12) + Wj
TT2 := gg1(E, *F, G) + *H + SS1 + Wi
A12 := rotl32(12, A)
SS1 := rotl32(7, A12+E+TJ)
TT1 := ff1(A, *B, C) + *D + (SS1 ^ A12) + Wj
TT2 := gg1(E, *F, G) + *H + SS1 + Wi
*B = rotl32(9, *B)
*D = TT1
*F = rotl32(19, *F)
*H = p0(TT2)
*B = rotl32(9, *B)
*D = TT1
*F = rotl32(19, *F)
*H = p0(TT2)
}
func sm3e(W0 uint32, W7 uint32, W13 uint32, W3 uint32, W10 uint32) uint32 {
return p1(W0 ^ W7 ^ rotl32(15, W13)) ^ rotl32(7, W3) ^ W10
return p1(W0^W7^rotl32(15, W13)) ^ rotl32(7, W3) ^ W10
}
func loadBe32(x []byte) uint32 {
return uint32(x[3]) | (uint32(x[2]) << 8) | (uint32(x[1]) << 16) | (uint32(x[0]) << 24)
return uint32(x[3]) | (uint32(x[2]) << 8) | (uint32(x[1]) << 16) | (uint32(x[0]) << 24)
}
func store64Be(val []byte, x uint64) {
val[0] = byte(x>>56)
val[1] = byte(x>>48)
val[2] = byte(x>>40)
val[3] = byte(x>>32)
val[4] = byte(x>>24)
val[5] = byte(x>>16)
val[6] = byte(x>>8 )
val[7] = byte(x>>0 )
val[0] = byte(x >> 56)
val[1] = byte(x >> 48)
val[2] = byte(x >> 40)
val[3] = byte(x >> 32)
val[4] = byte(x >> 24)
val[5] = byte(x >> 16)
val[6] = byte(x >> 8)
val[7] = byte(x >> 0)
}
func store32Be(val []byte, x uint32) {
val[0] = byte(x>>24)
val[1] = byte(x>>16)
val[2] = byte(x>>8 )
val[3] = byte(x>>0 )
val[0] = byte(x >> 24)
val[1] = byte(x >> 16)
val[2] = byte(x >> 8)
val[3] = byte(x >> 0)
}
func (d *digest) compress(input []byte, blocks int) {
A := d.h[0]
B := d.h[1]
C := d.h[2]
D := d.h[3]
E := d.h[4]
F := d.h[5]
G := d.h[6]
H := d.h[7]
A := d.h[0]
B := d.h[1]
C := d.h[2]
D := d.h[3]
E := d.h[4]
F := d.h[5]
G := d.h[6]
H := d.h[7]
for i := 0; i < blocks; i++ {
next64Block := input[i*64:]
for i := 0; i < blocks; i++ {
next64Block := input[i*64:]
W00 := loadBe32(next64Block[0:])
W01 := loadBe32(next64Block[4:])
W02 := loadBe32(next64Block[8:])
W03 := loadBe32(next64Block[12:])
W04 := loadBe32(next64Block[16:])
W05 := loadBe32(next64Block[20:])
W06 := loadBe32(next64Block[24:])
W07 := loadBe32(next64Block[28:])
W08 := loadBe32(next64Block[32:])
W09 := loadBe32(next64Block[36:])
W10 := loadBe32(next64Block[40:])
W11 := loadBe32(next64Block[44:])
W12 := loadBe32(next64Block[48:])
W13 := loadBe32(next64Block[52:])
W14 := loadBe32(next64Block[56:])
W15 := loadBe32(next64Block[60:])
r1(A, &B, C, &D, E, &F, G, &H, 0x79CC4519, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r1(D, &A, B, &C, H, &E, F, &G, 0xF3988A32, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r1(C, &D, A, &B, G, &H, E, &F, 0xE7311465, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r1(B, &C, D, &A, F, &G, H, &E, 0xCE6228CB, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r1(A, &B, C, &D, E, &F, G, &H, 0x9CC45197, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r1(D, &A, B, &C, H, &E, F, &G, 0x3988A32F, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r1(C, &D, A, &B, G, &H, E, &F, 0x7311465E, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r1(B, &C, D, &A, F, &G, H, &E, 0xE6228CBC, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r1(A, &B, C, &D, E, &F, G, &H, 0xCC451979, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r1(D, &A, B, &C, H, &E, F, &G, 0x988A32F3, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r1(C, &D, A, &B, G, &H, E, &F, 0x311465E7, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r1(B, &C, D, &A, F, &G, H, &E, 0x6228CBCE, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r1(A, &B, C, &D, E, &F, G, &H, 0xC451979C, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r1(D, &A, B, &C, H, &E, F, &G, 0x88A32F39, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r1(C, &D, A, &B, G, &H, E, &F, 0x11465E73, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r1(B, &C, D, &A, F, &G, H, &E, 0x228CBCE6, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x9D8A7A87, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0x3B14F50F, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0x7629EA1E, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xEC53D43C, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xD8A7A879, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r2(D, &A, B, &C, H, &E, F, &G, 0xB14F50F3, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r2(C, &D, A, &B, G, &H, E, &F, 0x629EA1E7, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r2(B, &C, D, &A, F, &G, H, &E, 0xC53D43CE, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r2(A, &B, C, &D, E, &F, G, &H, 0x8A7A879D, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r2(D, &A, B, &C, H, &E, F, &G, 0x14F50F3B, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r2(C, &D, A, &B, G, &H, E, &F, 0x29EA1E76, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r2(B, &C, D, &A, F, &G, H, &E, 0x53D43CEC, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r2(A, &B, C, &D, E, &F, G, &H, 0xA7A879D8, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r2(D, &A, B, &C, H, &E, F, &G, 0x4F50F3B1, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r2(C, &D, A, &B, G, &H, E, &F, 0x9EA1E762, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r2(B, &C, D, &A, F, &G, H, &E, 0x3D43CEC5, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x7A879D8A, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0xF50F3B14, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0xEA1E7629, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xD43CEC53, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xA879D8A7, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r2(D, &A, B, &C, H, &E, F, &G, 0x50F3B14F, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r2(C, &D, A, &B, G, &H, E, &F, 0xA1E7629E, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r2(B, &C, D, &A, F, &G, H, &E, 0x43CEC53D, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r2(A, &B, C, &D, E, &F, G, &H, 0x879D8A7A, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r2(D, &A, B, &C, H, &E, F, &G, 0x0F3B14F5, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r2(C, &D, A, &B, G, &H, E, &F, 0x1E7629EA, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r2(B, &C, D, &A, F, &G, H, &E, 0x3CEC53D4, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r2(A, &B, C, &D, E, &F, G, &H, 0x79D8A7A8, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r2(D, &A, B, &C, H, &E, F, &G, 0xF3B14F50, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r2(C, &D, A, &B, G, &H, E, &F, 0xE7629EA1, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r2(B, &C, D, &A, F, &G, H, &E, 0xCEC53D43, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x9D8A7A87, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0x3B14F50F, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0x7629EA1E, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xEC53D43C, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xD8A7A879, W04, W04^W08)
r2(D, &A, B, &C, H, &E, F, &G, 0xB14F50F3, W05, W05^W09)
r2(C, &D, A, &B, G, &H, E, &F, 0x629EA1E7, W06, W06^W10)
r2(B, &C, D, &A, F, &G, H, &E, 0xC53D43CE, W07, W07^W11)
r2(A, &B, C, &D, E, &F, G, &H, 0x8A7A879D, W08, W08^W12)
r2(D, &A, B, &C, H, &E, F, &G, 0x14F50F3B, W09, W09^W13)
r2(C, &D, A, &B, G, &H, E, &F, 0x29EA1E76, W10, W10^W14)
r2(B, &C, D, &A, F, &G, H, &E, 0x53D43CEC, W11, W11^W15)
r2(A, &B, C, &D, E, &F, G, &H, 0xA7A879D8, W12, W12^W00)
r2(D, &A, B, &C, H, &E, F, &G, 0x4F50F3B1, W13, W13^W01)
r2(C, &D, A, &B, G, &H, E, &F, 0x9EA1E762, W14, W14^W02)
r2(B, &C, D, &A, F, &G, H, &E, 0x3D43CEC5, W15, W15^W03)
W00 := loadBe32(next64Block[0:])
W01 := loadBe32(next64Block[4:])
W02 := loadBe32(next64Block[8:])
W03 := loadBe32(next64Block[12:])
W04 := loadBe32(next64Block[16:])
W05 := loadBe32(next64Block[20:])
W06 := loadBe32(next64Block[24:])
W07 := loadBe32(next64Block[28:])
W08 := loadBe32(next64Block[32:])
W09 := loadBe32(next64Block[36:])
W10 := loadBe32(next64Block[40:])
W11 := loadBe32(next64Block[44:])
W12 := loadBe32(next64Block[48:])
W13 := loadBe32(next64Block[52:])
W14 := loadBe32(next64Block[56:])
W15 := loadBe32(next64Block[60:])
r1(A, &B, C, &D, E, &F, G, &H, 0x79CC4519, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r1(D, &A, B, &C, H, &E, F, &G, 0xF3988A32, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r1(C, &D, A, &B, G, &H, E, &F, 0xE7311465, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r1(B, &C, D, &A, F, &G, H, &E, 0xCE6228CB, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r1(A, &B, C, &D, E, &F, G, &H, 0x9CC45197, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r1(D, &A, B, &C, H, &E, F, &G, 0x3988A32F, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r1(C, &D, A, &B, G, &H, E, &F, 0x7311465E, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r1(B, &C, D, &A, F, &G, H, &E, 0xE6228CBC, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r1(A, &B, C, &D, E, &F, G, &H, 0xCC451979, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r1(D, &A, B, &C, H, &E, F, &G, 0x988A32F3, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r1(C, &D, A, &B, G, &H, E, &F, 0x311465E7, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r1(B, &C, D, &A, F, &G, H, &E, 0x6228CBCE, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r1(A, &B, C, &D, E, &F, G, &H, 0xC451979C, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r1(D, &A, B, &C, H, &E, F, &G, 0x88A32F39, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r1(C, &D, A, &B, G, &H, E, &F, 0x11465E73, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r1(B, &C, D, &A, F, &G, H, &E, 0x228CBCE6, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x9D8A7A87, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0x3B14F50F, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0x7629EA1E, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xEC53D43C, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xD8A7A879, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r2(D, &A, B, &C, H, &E, F, &G, 0xB14F50F3, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r2(C, &D, A, &B, G, &H, E, &F, 0x629EA1E7, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r2(B, &C, D, &A, F, &G, H, &E, 0xC53D43CE, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r2(A, &B, C, &D, E, &F, G, &H, 0x8A7A879D, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r2(D, &A, B, &C, H, &E, F, &G, 0x14F50F3B, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r2(C, &D, A, &B, G, &H, E, &F, 0x29EA1E76, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r2(B, &C, D, &A, F, &G, H, &E, 0x53D43CEC, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r2(A, &B, C, &D, E, &F, G, &H, 0xA7A879D8, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r2(D, &A, B, &C, H, &E, F, &G, 0x4F50F3B1, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r2(C, &D, A, &B, G, &H, E, &F, 0x9EA1E762, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r2(B, &C, D, &A, F, &G, H, &E, 0x3D43CEC5, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x7A879D8A, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0xF50F3B14, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0xEA1E7629, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xD43CEC53, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xA879D8A7, W04, W04^W08)
W04 = sm3e(W04, W11, W01, W07, W14)
r2(D, &A, B, &C, H, &E, F, &G, 0x50F3B14F, W05, W05^W09)
W05 = sm3e(W05, W12, W02, W08, W15)
r2(C, &D, A, &B, G, &H, E, &F, 0xA1E7629E, W06, W06^W10)
W06 = sm3e(W06, W13, W03, W09, W00)
r2(B, &C, D, &A, F, &G, H, &E, 0x43CEC53D, W07, W07^W11)
W07 = sm3e(W07, W14, W04, W10, W01)
r2(A, &B, C, &D, E, &F, G, &H, 0x879D8A7A, W08, W08^W12)
W08 = sm3e(W08, W15, W05, W11, W02)
r2(D, &A, B, &C, H, &E, F, &G, 0x0F3B14F5, W09, W09^W13)
W09 = sm3e(W09, W00, W06, W12, W03)
r2(C, &D, A, &B, G, &H, E, &F, 0x1E7629EA, W10, W10^W14)
W10 = sm3e(W10, W01, W07, W13, W04)
r2(B, &C, D, &A, F, &G, H, &E, 0x3CEC53D4, W11, W11^W15)
W11 = sm3e(W11, W02, W08, W14, W05)
r2(A, &B, C, &D, E, &F, G, &H, 0x79D8A7A8, W12, W12^W00)
W12 = sm3e(W12, W03, W09, W15, W06)
r2(D, &A, B, &C, H, &E, F, &G, 0xF3B14F50, W13, W13^W01)
W13 = sm3e(W13, W04, W10, W00, W07)
r2(C, &D, A, &B, G, &H, E, &F, 0xE7629EA1, W14, W14^W02)
W14 = sm3e(W14, W05, W11, W01, W08)
r2(B, &C, D, &A, F, &G, H, &E, 0xCEC53D43, W15, W15^W03)
W15 = sm3e(W15, W06, W12, W02, W09)
r2(A, &B, C, &D, E, &F, G, &H, 0x9D8A7A87, W00, W00^W04)
W00 = sm3e(W00, W07, W13, W03, W10)
r2(D, &A, B, &C, H, &E, F, &G, 0x3B14F50F, W01, W01^W05)
W01 = sm3e(W01, W08, W14, W04, W11)
r2(C, &D, A, &B, G, &H, E, &F, 0x7629EA1E, W02, W02^W06)
W02 = sm3e(W02, W09, W15, W05, W12)
r2(B, &C, D, &A, F, &G, H, &E, 0xEC53D43C, W03, W03^W07)
W03 = sm3e(W03, W10, W00, W06, W13)
r2(A, &B, C, &D, E, &F, G, &H, 0xD8A7A879, W04, W04^W08)
r2(D, &A, B, &C, H, &E, F, &G, 0xB14F50F3, W05, W05^W09)
r2(C, &D, A, &B, G, &H, E, &F, 0x629EA1E7, W06, W06^W10)
r2(B, &C, D, &A, F, &G, H, &E, 0xC53D43CE, W07, W07^W11)
r2(A, &B, C, &D, E, &F, G, &H, 0x8A7A879D, W08, W08^W12)
r2(D, &A, B, &C, H, &E, F, &G, 0x14F50F3B, W09, W09^W13)
r2(C, &D, A, &B, G, &H, E, &F, 0x29EA1E76, W10, W10^W14)
r2(B, &C, D, &A, F, &G, H, &E, 0x53D43CEC, W11, W11^W15)
r2(A, &B, C, &D, E, &F, G, &H, 0xA7A879D8, W12, W12^W00)
r2(D, &A, B, &C, H, &E, F, &G, 0x4F50F3B1, W13, W13^W01)
r2(C, &D, A, &B, G, &H, E, &F, 0x9EA1E762, W14, W14^W02)
r2(B, &C, D, &A, F, &G, H, &E, 0x3D43CEC5, W15, W15^W03)
d.h[0] ^= A
d.h[1] ^= B
d.h[2] ^= C
d.h[3] ^= D
d.h[4] ^= E
d.h[5] ^= F
d.h[6] ^= G
d.h[7] ^= H
d.h[0] ^= A
d.h[1] ^= B
d.h[2] ^= C
d.h[3] ^= D
d.h[4] ^= E
d.h[5] ^= F
d.h[6] ^= G
d.h[7] ^= H
A = d.h[0]
B = d.h[1]
C = d.h[2]
D = d.h[3]
E = d.h[4]
F = d.h[5]
G = d.h[6]
H = d.h[7]
}
A = d.h[0]
B = d.h[1]
C = d.h[2]
D = d.h[3]
E = d.h[4]
F = d.h[5]
G = d.h[6]
H = d.h[7]
}
}

View File

@ -4,18 +4,18 @@
package sm3
import (
"hash"
"hash"
)
const (
init0 = 0x7380166F
init1 = 0x4914B2B9
init2 = 0x172442D7
init3 = 0xDA8A0600
init4 = 0xA96F30BC
init5 = 0x163138AA
init6 = 0xE38DEE4D
init7 = 0xB0FB0E4E
init0 = 0x7380166F
init1 = 0x4914B2B9
init2 = 0x172442D7
init3 = 0xDA8A0600
init4 = 0xA96F30BC
init5 = 0x163138AA
init6 = 0xE38DEE4D
init7 = 0xB0FB0E4E
)
// The size of a SM-3 checksum in bytes.
@ -26,15 +26,15 @@ const BlockSize int = 64
// digest represents the partial evaluation of a checksum.
type digest struct {
h [8]uint32
len uint64
b [BlockSize]byte
h [8]uint32
len uint64
b [BlockSize]byte
}
func New() hash.Hash {
d := new(digest)
d.Reset()
return d
d := new(digest)
d.Reset()
return d
}
func (d *digest) BlockSize() int { return BlockSize }
@ -44,63 +44,67 @@ func (d *digest) Size() int { return Size }
func (d *digest) Init() { d.Reset() }
func (d *digest) Reset() {
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
d.len = 0
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
d.len = 0
}
func (d *digest) Write(input []byte) (nn int, err error) {
// current possition in the buffer
idx := int(d.len & uint64((d.BlockSize() - 1)))
d.len += uint64(len(input))
// current possition in the buffer
idx := int(d.len & uint64((d.BlockSize() - 1)))
d.len += uint64(len(input))
if len(input) + idx < d.BlockSize() {
copy(d.b[idx:], input)
return
}
if len(input)+idx < d.BlockSize() {
copy(d.b[idx:], input)
return
}
c := d.BlockSize() - idx
copy(d.b[idx:], input[:c])
d.compress(d.b[:], 1)
c := d.BlockSize() - idx
copy(d.b[idx:], input[:c])
d.compress(d.b[:], 1)
input = input[c:]
nblocks := int(len(input) / d.BlockSize())
d.compress(input[:], nblocks)
input = input[c:]
nblocks := int(len(input) / d.BlockSize())
d.compress(input[:], nblocks)
// this eventually could be done in d.compress
copy(d.b[:], input[nblocks*d.BlockSize():])
return
// this eventually could be done in d.compress
copy(d.b[:], input[nblocks*d.BlockSize():])
return
}
func (d *digest) Sum(in []byte) []byte {
var output [32]byte
var output [32]byte
// Copy context so that caller can keep updating
dc := *d
// Copy context so that caller can keep updating
dc := *d
dc.Write(in)
dc.Write(in)
idx := int(dc.len & uint64(dc.BlockSize() - 1))
for i:=idx+1; i<len(dc.b); i++ {dc.b[i] = 0}
dc.b[idx] = 0x80
if idx >= 56 {
dc.compress(dc.b[:], 1)
for i:=range (dc.b) {dc.b[i] = 0}
}
idx := int(dc.len & uint64(dc.BlockSize()-1))
for i := idx + 1; i < len(dc.b); i++ {
dc.b[i] = 0
}
dc.b[idx] = 0x80
if idx >= 56 {
dc.compress(dc.b[:], 1)
for i := range dc.b {
dc.b[i] = 0
}
}
// add total bits
store64Be(dc.b[56:], dc.len * 8)
// add total bits
store64Be(dc.b[56:], dc.len*8)
dc.compress(dc.b[:], 1)
for i:=0; i<Size/4; i++ {
store32Be(output[4*i:], dc.h[i])
}
return output[:]
dc.compress(dc.b[:], 1)
for i := 0; i < Size/4; i++ {
store32Be(output[4*i:], dc.h[i])
}
return output[:]
}

File diff suppressed because it is too large Load Diff

53
rand/ctr_drbg.go Normal file
View File

@ -0,0 +1,53 @@
import rand
import (
"crypto/aes"
"crypto/cipher"
)
// Constants below correspond to AES-256, which is currently
// the only block cipher supported.
const {
Blocklen = 16
Keylen = 32
}
type CtrDrbg struct {
v uint
keylen uint // OZAPTF: is it needed?
counter uint
strength uint
resistance bool
}
func (c *CtrDrbg) update(data []byte) {
}
func New() *CtrDrbg {
c = new(CtrDrbg)
c.key = make([]byte, 0, Keylen)
c.v = make([]byte, 0, Blocklen)
// Security strength for AES-256 as per SP800-57, 5.6.1
c.strength = 256
return c
}
func (c *CtrDrbg) Init(entropy []byte, personalization []byte, strength uint) bool {
if len(entropy) < (c.strength/8) {
return nil
}
// does enropyt needs to have some minimal length?
seed := make([]byte, 0, c.strength / 8)
c.update(seed)
c.counter = 1
return c
}
func (c *CtrDrbg) Update() {}
func (c *CtrDrbg) Read(b []byte) (n int, err error) {
}

21
rand/ctr_drbg_test.go Normal file
View File

@ -0,0 +1,21 @@
import rand
import (
"testing"
"fmt"
"io"
"os"
"crypto/aes"
"crypto/cipher"
)
func TestNominal(t* testing.T) {
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(pt, ct)
}