// Code generated by go generate; DO NOT EDIT. // This file was generated by robots. package p434 import ( . "github.com/henrydcase/nobs/dh/sidh/common" ) // ----------------------------------------------------------------------------- // Functions for traversing isogeny trees acoording to strategy. Key type 'A' is // // Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed // for public key generation. func traverseTreePublicKeyA(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint) { var points = make([]ProjectivePoint, 0, 8) var indices = make([]int, 0, 8) var i, sIdx int var phi isogeny4 cparam := CalcCurveParamsEquiv4(curve) strat := params.A.IsogenyStrategy stratSz := len(strat) for j := 1; j <= stratSz; j++ { for i <= stratSz-j { points = append(points, *xR) indices = append(indices, i) k := strat[sIdx] sIdx++ Pow2k(xR, &cparam, 2*k) i += int(k) } cparam = phi.GenerateCurve(xR) for k := 0; k < len(points); k++ { points[k] = phi.EvaluatePoint(&points[k]) } *phiP = phi.EvaluatePoint(phiP) *phiQ = phi.EvaluatePoint(phiQ) *phiR = phi.EvaluatePoint(phiR) // pop xR from points *xR, points = points[len(points)-1], points[:len(points)-1] i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1] } } // Traverses isogeny tree in order to compute xR needed // for public key generation. func traverseTreeSharedKeyA(curve *ProjectiveCurveParameters, xR *ProjectivePoint) { var points = make([]ProjectivePoint, 0, 8) var indices = make([]int, 0, 8) var i, sIdx int var phi isogeny4 cparam := CalcCurveParamsEquiv4(curve) strat := params.A.IsogenyStrategy stratSz := len(strat) for j := 1; j <= stratSz; j++ { for i <= stratSz-j { points = append(points, *xR) indices = append(indices, i) k := strat[sIdx] sIdx++ Pow2k(xR, &cparam, 2*k) i += int(k) } cparam = phi.GenerateCurve(xR) for k := 0; k < len(points); k++ { points[k] = phi.EvaluatePoint(&points[k]) } // pop xR from points *xR, points = points[len(points)-1], points[:len(points)-1] i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1] } } // Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed // for public key generation. func traverseTreePublicKeyB(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint) { var points = make([]ProjectivePoint, 0, 8) var indices = make([]int, 0, 8) var i, sIdx int var phi isogeny3 cparam := CalcCurveParamsEquiv3(curve) strat := params.B.IsogenyStrategy stratSz := len(strat) for j := 1; j <= stratSz; j++ { for i <= stratSz-j { points = append(points, *xR) indices = append(indices, i) k := strat[sIdx] sIdx++ Pow3k(xR, &cparam, k) i += int(k) } cparam = phi.GenerateCurve(xR) for k := 0; k < len(points); k++ { points[k] = phi.EvaluatePoint(&points[k]) } *phiP = phi.EvaluatePoint(phiP) *phiQ = phi.EvaluatePoint(phiQ) *phiR = phi.EvaluatePoint(phiR) // pop xR from points *xR, points = points[len(points)-1], points[:len(points)-1] i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1] } } // Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed // for public key generation. func traverseTreeSharedKeyB(curve *ProjectiveCurveParameters, xR *ProjectivePoint) { var points = make([]ProjectivePoint, 0, 8) var indices = make([]int, 0, 8) var i, sIdx int var phi isogeny3 cparam := CalcCurveParamsEquiv3(curve) strat := params.B.IsogenyStrategy stratSz := len(strat) for j := 1; j <= stratSz; j++ { for i <= stratSz-j { points = append(points, *xR) indices = append(indices, i) k := strat[sIdx] sIdx++ Pow3k(xR, &cparam, k) i += int(k) } cparam = phi.GenerateCurve(xR) for k := 0; k < len(points); k++ { points[k] = phi.EvaluatePoint(&points[k]) } // pop xR from points *xR, points = points[len(points)-1], points[:len(points)-1] i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1] } } // Generate a public key in the 2-torsion group. Public key is a set // of three x-coordinates: xP,xQ,x(P-Q), where P,Q are points on E_a(Fp2) func PublicKeyGenA(pub3Pt *[3]Fp2, prvBytes []byte) { var xPA, xQA, xRA ProjectivePoint var xPB, xQB, xRB, xR ProjectivePoint var invZP, invZQ, invZR Fp2 var phi isogeny4 // Load points for A xPA = ProjectivePoint{X: params.A.AffineP, Z: params.OneFp2} xQA = ProjectivePoint{X: params.A.AffineQ, Z: params.OneFp2} xRA = ProjectivePoint{X: params.A.AffineR, Z: params.OneFp2} // Load points for B xRB = ProjectivePoint{X: params.B.AffineR, Z: params.OneFp2} xQB = ProjectivePoint{X: params.B.AffineQ, Z: params.OneFp2} xPB = ProjectivePoint{X: params.B.AffineP, Z: params.OneFp2} // Find isogeny kernel xR = ScalarMul3Pt(¶ms.InitCurve, &xPA, &xQA, &xRA, params.A.SecretBitLen, prvBytes) traverseTreePublicKeyA(¶ms.InitCurve, &xR, &xPB, &xQB, &xRB) // Secret isogeny phi.GenerateCurve(&xR) xPA = phi.EvaluatePoint(&xPB) xQA = phi.EvaluatePoint(&xQB) xRA = phi.EvaluatePoint(&xRB) Fp2Batch3Inv(&xPA.Z, &xQA.Z, &xRA.Z, &invZP, &invZQ, &invZR) mul(&pub3Pt[0], &xPA.X, &invZP) mul(&pub3Pt[1], &xQA.X, &invZQ) mul(&pub3Pt[2], &xRA.X, &invZR) } // Generate a public key in the 2-torsion group. Public key is a set // of three x-coordinates: xP,xQ,x(P-Q), where P,Q are points on E_a(Fp2) func PublicKeyGenB(pub3Pt *[3]Fp2, prvBytes []byte) { var xPB, xQB, xRB, xR ProjectivePoint var xPA, xQA, xRA ProjectivePoint var invZP, invZQ, invZR Fp2 var phi isogeny3 // Load points for B xRB = ProjectivePoint{X: params.B.AffineR, Z: params.OneFp2} xQB = ProjectivePoint{X: params.B.AffineQ, Z: params.OneFp2} xPB = ProjectivePoint{X: params.B.AffineP, Z: params.OneFp2} // Load points for A xPA = ProjectivePoint{X: params.A.AffineP, Z: params.OneFp2} xQA = ProjectivePoint{X: params.A.AffineQ, Z: params.OneFp2} xRA = ProjectivePoint{X: params.A.AffineR, Z: params.OneFp2} // Find isogeny kernel xR = ScalarMul3Pt(¶ms.InitCurve, &xPB, &xQB, &xRB, params.B.SecretBitLen, prvBytes) traverseTreePublicKeyB(¶ms.InitCurve, &xR, &xPA, &xQA, &xRA) phi.GenerateCurve(&xR) xPB = phi.EvaluatePoint(&xPA) xQB = phi.EvaluatePoint(&xQA) xRB = phi.EvaluatePoint(&xRA) Fp2Batch3Inv(&xPB.Z, &xQB.Z, &xRB.Z, &invZP, &invZQ, &invZR) mul(&pub3Pt[0], &xPB.X, &invZP) mul(&pub3Pt[1], &xQB.X, &invZQ) mul(&pub3Pt[2], &xRB.X, &invZR) } // ----------------------------------------------------------------------------- // Key agreement functions // // Establishing shared keys in in 2-torsion group func DeriveSecretA(ss, prv []byte, pub3Pt *[3]Fp2) { var xP, xQ, xQmP ProjectivePoint var xR ProjectivePoint var phi isogeny4 var jInv Fp2 // Recover curve coefficients cparam := params.InitCurve RecoverCoordinateA(&cparam, &pub3Pt[0], &pub3Pt[1], &pub3Pt[2]) // Find kernel of the morphism xP = ProjectivePoint{X: pub3Pt[0], Z: params.OneFp2} xQ = ProjectivePoint{X: pub3Pt[1], Z: params.OneFp2} xQmP = ProjectivePoint{X: pub3Pt[2], Z: params.OneFp2} xR = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, params.A.SecretBitLen, prv) // Traverse isogeny tree traverseTreeSharedKeyA(&cparam, &xR) // Calculate j-invariant on isogeneus curve c := phi.GenerateCurve(&xR) RecoverCurveCoefficients4(&cparam, &c) Jinvariant(&cparam, &jInv) FromMontgomery(&jInv, &jInv) Fp2ToBytes(ss, &jInv, params.Bytelen) } // Establishing shared keys in in 3-torsion group func DeriveSecretB(ss, prv []byte, pub3Pt *[3]Fp2) { var xP, xQ, xQmP ProjectivePoint var xR ProjectivePoint var phi isogeny3 var jInv Fp2 // Recover curve coefficients cparam := params.InitCurve RecoverCoordinateA(&cparam, &pub3Pt[0], &pub3Pt[1], &pub3Pt[2]) // Find kernel of the morphism xP = ProjectivePoint{X: pub3Pt[0], Z: params.OneFp2} xQ = ProjectivePoint{X: pub3Pt[1], Z: params.OneFp2} xQmP = ProjectivePoint{X: pub3Pt[2], Z: params.OneFp2} xR = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, params.B.SecretBitLen, prv) // Traverse isogeny tree traverseTreeSharedKeyB(&cparam, &xR) // Calculate j-invariant on isogeneus curve c := phi.GenerateCurve(&xR) RecoverCurveCoefficients3(&cparam, &c) Jinvariant(&cparam, &jInv) FromMontgomery(&jInv, &jInv) Fp2ToBytes(ss, &jInv, params.Bytelen) }