1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-26 17:11:22 +00:00
nobs/dh/sidh/internal/p503/fp2.go
Henry Case a152c09fd5
sike: move common (#33)
* makes common reusable
* exports some more symbols from common
* remove kem for a moment
2020-05-16 20:14:48 +00:00

196 lines
5.8 KiB
Go

// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots.
package p503
import (
"github.com/henrydcase/nobs/dh/sidh/common"
)
// Montgomery multiplication. Input values must be already
// in Montgomery domain.
func mulP(dest, lhs, rhs *common.Fp) {
var ab common.FpX2
mulP503(&ab, lhs, rhs) // = a*b*R*R
rdcP503(dest, &ab) // = a*b*R mod p
}
// Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x).
// Uses variation of sliding-window algorithm from with window size
// of 5 and least to most significant bit sliding (left-to-right)
// See HAC 14.85 for general description.
//
// Allowed to overlap x with dest.
// All values in Montgomery domains
// Set dest = x^(2^k), for k >= 1, by repeated squarings.
func p34(dest, x *common.Fp) {
var lookup [16]common.Fp
// This performs sum(powStrategy) + 1 squarings and len(lookup) + len(mulStrategy)
// multiplications.
powStrategy := []uint8{12, 5, 5, 2, 7, 11, 3, 8, 4, 11, 4, 7, 5, 6, 3, 7, 5, 7, 2, 12, 5, 6, 4, 6, 8, 6, 4, 7, 5, 5, 8, 5, 8, 5, 5, 8, 9, 3, 6, 2, 10, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3}
mulStrategy := []uint8{12, 11, 10, 0, 1, 8, 3, 7, 1, 8, 3, 6, 7, 14, 2, 14, 14, 9, 0, 13, 9, 15, 5, 12, 7, 13, 7, 15, 6, 7, 9, 0, 5, 7, 6, 8, 8, 3, 7, 0, 10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3}
initialMul := uint8(0)
// Precompute lookup table of odd multiples of x for window
// size k=5.
var xx common.Fp
mulP(&xx, x, x)
lookup[0] = *x
for i := 1; i < 16; i++ {
mulP(&lookup[i], &lookup[i-1], &xx)
}
// Now lookup = {x, x^3, x^5, ... }
// so that lookup[i] = x^{2*i + 1}
// so that lookup[k/2] = x^k, for odd k
*dest = lookup[initialMul]
for i := uint8(0); i < uint8(len(powStrategy)); i++ {
mulP(dest, dest, dest)
for j := uint8(1); j < powStrategy[i]; j++ {
mulP(dest, dest, dest)
}
mulP(dest, dest, &lookup[mulStrategy[i]])
}
}
func add(dest, lhs, rhs *common.Fp2) {
addP503(&dest.A, &lhs.A, &rhs.A)
addP503(&dest.B, &lhs.B, &rhs.B)
}
func sub(dest, lhs, rhs *common.Fp2) {
subP503(&dest.A, &lhs.A, &rhs.A)
subP503(&dest.B, &lhs.B, &rhs.B)
}
func mul(dest, lhs, rhs *common.Fp2) {
var bMinA, cMinD common.Fp
var ac, bd common.FpX2
var adPlusBc common.FpX2
var acMinBd common.FpX2
// Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b).
//
// (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i
//
// Use Karatsuba's trick: note that
//
// (b - a)*(c - d) = (b*c + a*d) - a*c - b*d
//
// so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d.
mulP503(&ac, &lhs.A, &rhs.A) // = a*c*R*R
mulP503(&bd, &lhs.B, &rhs.B) // = b*d*R*R
subP503(&bMinA, &lhs.B, &lhs.A) // = (b-a)*R
subP503(&cMinD, &rhs.A, &rhs.B) // = (c-d)*R
mulP503(&adPlusBc, &bMinA, &cMinD) // = (b-a)*(c-d)*R*R
adlP503(&adPlusBc, &adPlusBc, &ac) // = ((b-a)*(c-d) + a*c)*R*R
adlP503(&adPlusBc, &adPlusBc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R
rdcP503(&dest.B, &adPlusBc) // = (a*d + b*c)*R mod p
sulP503(&acMinBd, &ac, &bd) // = (a*c - b*d)*R*R
rdcP503(&dest.A, &acMinBd) // = (a*c - b*d)*R mod p
}
// Set dest = 1/x
//
// Allowed to overlap dest with x.
//
// Returns dest to allow chaining operations.
func inv(dest, x *common.Fp2) {
var e1, e2 common.FpX2
var f1, f2 common.Fp
// We want to compute
//
// 1 1 (a - bi) (a - bi)
// -------- = -------- -------- = -----------
// (a + bi) (a + bi) (a - bi) (a^2 + b^2)
//
// Letting c = 1/(a^2 + b^2), this is
//
// 1/(a+bi) = a*c - b*ci.
mulP503(&e1, &x.A, &x.A) // = a*a*R*R
mulP503(&e2, &x.B, &x.B) // = b*b*R*R
adlP503(&e1, &e1, &e2) // = (a^2 + b^2)*R*R
rdcP503(&f1, &e1) // = (a^2 + b^2)*R mod p
// Now f1 = a^2 + b^2
mulP(&f2, &f1, &f1)
p34(&f2, &f2)
mulP(&f2, &f2, &f2)
mulP(&f2, &f2, &f1)
mulP503(&e1, &x.A, &f2)
rdcP503(&dest.A, &e1)
subP503(&f1, &common.Fp{}, &x.B)
mulP503(&e1, &f1, &f2)
rdcP503(&dest.B, &e1)
}
func sqr(dest, x *common.Fp2) {
var a2, aPlusB, aMinusB common.Fp
var a2MinB2, ab2 common.FpX2
a := &x.A
b := &x.B
// (a + bi)*(a + bi) = (a^2 - b^2) + 2abi.
addP503(&a2, a, a) // = a*R + a*R = 2*a*R
addP503(&aPlusB, a, b) // = a*R + b*R = (a+b)*R
subP503(&aMinusB, a, b) // = a*R - b*R = (a-b)*R
mulP503(&a2MinB2, &aPlusB, &aMinusB) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R
mulP503(&ab2, &a2, b) // = 2*a*b*R*R
rdcP503(&dest.A, &a2MinB2) // = (a^2 - b^2)*R mod p
rdcP503(&dest.B, &ab2) // = 2*a*b*R mod p
}
// In case choice == 1, performs following swap in constant time:
// xPx <-> xQx
// xPz <-> xQz
// Otherwise returns xPx, xPz, xQx, xQz unchanged
func cswap(xPx, xPz, xQx, xQz *common.Fp2, choice uint8) {
cswapP503(&xPx.A, &xQx.A, choice)
cswapP503(&xPx.B, &xQx.B, choice)
cswapP503(&xPz.A, &xQz.A, choice)
cswapP503(&xPz.B, &xQz.B, choice)
}
// Converts in.A and in.B to Montgomery domain and stores
// in 'out'
// out.A = in.A * R mod p
// out.B = in.B * R mod p
// Performs v = v*R^2*R^(-1) mod p, for both in.A and in.B
func ToMontgomery(out, in *common.Fp2) {
var aRR common.FpX2
// a*R*R
mulP503(&aRR, &in.A, &P503R2)
// a*R mod p
rdcP503(&out.A, &aRR)
mulP503(&aRR, &in.B, &P503R2)
rdcP503(&out.B, &aRR)
}
// Converts in.A and in.B from Montgomery domain and stores
// in 'out'
// out.A = in.A mod p
// out.B = in.B mod p
//
// After returning from the call 'in' is not modified.
func FromMontgomery(out, in *common.Fp2) {
var aR common.FpX2
// convert from montgomery domain
copy(aR[:], in.A[:])
rdcP503(&out.A, &aR) // = a mod p in [0, 2p)
modP503(&out.A) // = a mod p in [0, p)
for i := range aR {
aR[i] = 0
}
copy(aR[:], in.B[:])
rdcP503(&out.B, &aR)
modP503(&out.B)
}