Mirror von
https://github.com/henrydcase/nobs.git
synchronisiert 2024-11-22 15:18:57 +00:00
20fffc2f35
This change set modifies build metadata to add support for ppc64le (POWER9) and riscv64 (RISC-V). The arm64 and amd64 assembler implementations are architecture specific and do not support ppc64le or riscv64. On ppc64le or riscv64 a generic implementation is chosen. The drbg/internal/aes/cipher_noasm.go file was written by @mixmasala and myself. The csidh and sidh tests are extremely slow (>30m) on RISC-V using the sifive,u54-mc (HiFive Unleashed) development board. The test timeout is set to infinity on RISC-V by the top level Makefile as at least one test does not finish within the default 10 minutes on RISC-V. On RISC-V the csidh test finishes after around 30 minutes, the sidh test finishes after around 71 minutes. These changes were tested with amd64 (Intel Core i7), arm64 (Raspberry Pi 4b), ppc64le (Talos POWER9, PowerNV T2P9D01 REV 1.00), and riscv64 (HighFive Unleashed, rv64imafdc,sifive,u54-mc). The kernel versions of those systems follows: Linux rpi4 5.13.0-1009-raspi #10-Ubuntu SMP PREEMPT Mon Oct 25 13:58:43 UTC 2021 aarch64 aarch64 aarch64 GNU/Linux Linux i7 5.8.0-63-generic #71-Ubuntu SMP Tue Jul 13 15:59:12 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux Linux power9 5.11.0-34-generic #36-Ubuntu SMP Thu Aug 26 19:19:54 UTC 2021 ppc64le ppc64le ppc64le GNU/Linux Linux risc-v-unleashed-000 5.11.0-1022-generic #23~20.04.1-Ubuntu SMP Thu Oct 21 10:16:27 UTC 2021 riscv64 riscv64 riscv64 GNU/Linux
184 Zeilen
6.5 KiB
Go
184 Zeilen
6.5 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
// +build noasm amd64 arm64 ppc64le riscv64
|
|
|
|
// This Go implementation is derived in part from the reference
|
|
// ANSI C implementation, which carries the following notice:
|
|
//
|
|
// rijndael-alg-fst.c
|
|
//
|
|
// @version 3.0 (December 2000)
|
|
//
|
|
// Optimised ANSI C code for the Rijndael cipher (now AES)
|
|
//
|
|
// @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
|
|
// @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
|
|
// @author Paulo Barreto <paulo.barreto@terra.com.br>
|
|
//
|
|
// This code is hereby placed in the public domain.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
|
// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission
|
|
// for implementation details.
|
|
// https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
|
|
// https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
|
|
|
|
package aes
|
|
|
|
import (
|
|
"encoding/binary"
|
|
)
|
|
|
|
// Encrypt one block from src into dst, using the expanded key xk.
|
|
func encryptBlockGo(xk []uint32, dst, src []byte) {
|
|
_ = src[15] // early bounds check
|
|
s0 := binary.BigEndian.Uint32(src[0:4])
|
|
s1 := binary.BigEndian.Uint32(src[4:8])
|
|
s2 := binary.BigEndian.Uint32(src[8:12])
|
|
s3 := binary.BigEndian.Uint32(src[12:16])
|
|
|
|
// First round just XORs input with key.
|
|
s0 ^= xk[0]
|
|
s1 ^= xk[1]
|
|
s2 ^= xk[2]
|
|
s3 ^= xk[3]
|
|
|
|
// Middle rounds shuffle using tables.
|
|
// Number of rounds is set by length of expanded key.
|
|
nr := len(xk)/4 - 2 // - 2: one above, one more below
|
|
k := 4
|
|
var t0, t1, t2, t3 uint32
|
|
for r := 0; r < nr; r++ {
|
|
t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)]
|
|
t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)]
|
|
t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)]
|
|
t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)]
|
|
k += 4
|
|
s0, s1, s2, s3 = t0, t1, t2, t3
|
|
}
|
|
|
|
// Last round uses s-box directly and XORs to produce output.
|
|
s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff])
|
|
s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff])
|
|
s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff])
|
|
s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff])
|
|
|
|
s0 ^= xk[k+0]
|
|
s1 ^= xk[k+1]
|
|
s2 ^= xk[k+2]
|
|
s3 ^= xk[k+3]
|
|
|
|
_ = dst[15] // early bounds check
|
|
binary.BigEndian.PutUint32(dst[0:4], s0)
|
|
binary.BigEndian.PutUint32(dst[4:8], s1)
|
|
binary.BigEndian.PutUint32(dst[8:12], s2)
|
|
binary.BigEndian.PutUint32(dst[12:16], s3)
|
|
}
|
|
|
|
// Decrypt one block from src into dst, using the expanded key xk.
|
|
func decryptBlockGo(xk []uint32, dst, src []byte) {
|
|
_ = src[15] // early bounds check
|
|
s0 := binary.BigEndian.Uint32(src[0:4])
|
|
s1 := binary.BigEndian.Uint32(src[4:8])
|
|
s2 := binary.BigEndian.Uint32(src[8:12])
|
|
s3 := binary.BigEndian.Uint32(src[12:16])
|
|
|
|
// First round just XORs input with key.
|
|
s0 ^= xk[0]
|
|
s1 ^= xk[1]
|
|
s2 ^= xk[2]
|
|
s3 ^= xk[3]
|
|
|
|
// Middle rounds shuffle using tables.
|
|
// Number of rounds is set by length of expanded key.
|
|
nr := len(xk)/4 - 2 // - 2: one above, one more below
|
|
k := 4
|
|
var t0, t1, t2, t3 uint32
|
|
for r := 0; r < nr; r++ {
|
|
t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)]
|
|
t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)]
|
|
t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)]
|
|
t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)]
|
|
k += 4
|
|
s0, s1, s2, s3 = t0, t1, t2, t3
|
|
}
|
|
|
|
// Last round uses s-box directly and XORs to produce output.
|
|
s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff])
|
|
s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff])
|
|
s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff])
|
|
s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff])
|
|
|
|
s0 ^= xk[k+0]
|
|
s1 ^= xk[k+1]
|
|
s2 ^= xk[k+2]
|
|
s3 ^= xk[k+3]
|
|
|
|
_ = dst[15] // early bounds check
|
|
binary.BigEndian.PutUint32(dst[0:4], s0)
|
|
binary.BigEndian.PutUint32(dst[4:8], s1)
|
|
binary.BigEndian.PutUint32(dst[8:12], s2)
|
|
binary.BigEndian.PutUint32(dst[12:16], s3)
|
|
}
|
|
|
|
// Apply sbox0 to each byte in w.
|
|
func subw(w uint32) uint32 {
|
|
return uint32(sbox0[w>>24])<<24 |
|
|
uint32(sbox0[w>>16&0xff])<<16 |
|
|
uint32(sbox0[w>>8&0xff])<<8 |
|
|
uint32(sbox0[w&0xff])
|
|
}
|
|
|
|
// Rotate
|
|
func rotw(w uint32) uint32 { return w<<8 | w>>24 }
|
|
|
|
// Key expansion algorithm. See FIPS-197, Figure 11.
|
|
// Their rcon[i] is our powx[i-1] << 24.
|
|
func expandKeyGo(key []byte, enc, dec []uint32) {
|
|
// Encryption key setup.
|
|
var i int
|
|
nk := len(key) / 4
|
|
for i = 0; i < nk; i++ {
|
|
enc[i] = binary.BigEndian.Uint32(key[4*i:])
|
|
}
|
|
for ; i < len(enc); i++ {
|
|
t := enc[i-1]
|
|
if i%nk == 0 {
|
|
t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24)
|
|
} else if nk > 6 && i%nk == 4 {
|
|
t = subw(t)
|
|
}
|
|
enc[i] = enc[i-nk] ^ t
|
|
}
|
|
|
|
// Derive decryption key from encryption key.
|
|
// Reverse the 4-word round key sets from enc to produce dec.
|
|
// All sets but the first and last get the MixColumn transform applied.
|
|
if dec == nil {
|
|
return
|
|
}
|
|
n := len(enc)
|
|
for i := 0; i < n; i += 4 {
|
|
ei := n - i - 4
|
|
for j := 0; j < 4; j++ {
|
|
x := enc[ei+j]
|
|
if i > 0 && i+4 < n {
|
|
x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]]
|
|
}
|
|
dec[i+j] = x
|
|
}
|
|
}
|
|
}
|