1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-25 16:41:32 +00:00
nobs/dh/sidh/sike_test.go
Henry Case a152c09fd5
sike: move common (#33)
* makes common reusable
* exports some more symbols from common
* remove kem for a moment
2020-05-16 20:14:48 +00:00

602 lines
18 KiB
Go

package sidh
import (
"bufio"
"bytes"
"crypto/rand"
"encoding/hex"
"errors"
"fmt"
"io"
"os"
"strings"
"testing"
"github.com/henrydcase/nobs/dh/sidh/common"
)
type sikeVec struct {
id uint8
name string
kem *KEM
KatFile string
PkB string
PrB string
}
func Ok(t testing.TB, err error, msg string) {
t.Helper()
if err != nil {
t.Error(msg)
}
}
// testPanic returns true if call to function 'f' caused panic.
func testPanic(f func()) error {
var hasPanicked = errors.New("no panic detected")
defer func() {
if r := recover(); r != nil {
hasPanicked = nil
}
}()
f()
return hasPanicked
}
var tdataSike = map[uint8]sikeVec{
Fp434: {
Fp434, "P-434", NewSike434(rand.Reader),
"testdata/PQCkemKAT_374.rsp",
"1BD0A2E81307B6F96461317DDF535ACC0E59C742627BAE60D27605E10FAF722D" +
"22A73E184CB572A12E79DCD58C6B54FB01442114CBE9010B6CAEC25D04C16C5E" +
"42540C1524C545B8C67614ED4183C9FA5BD0BE45A7F89FBC770EE8E7E5E391C7" +
"EE6F35F74C29E6D9E35B1663DA01E48E9DEB2347512D366FDE505161677055E3" +
"EF23054D276E817E2C57025DA1C10D2461F68617F2D11256EEE4E2D7DBDF6C8E" +
"34F3A0FD00C625428CB41857002159DAB94267ABE42D630C6AAA91AF837C7A67" +
"40754EA6634C45454C51B0BB4D44C3CCCCE4B32C00901CF69C008D013348379B" +
"2F9837F428A01B6173584691F2A6F3A3C4CF487D20D261B36C8CDB1BC158E2A5" +
"162A9DA4F7A97AA0879B9897E2B6891B672201F9AEFBF799C27B2587120AC586" +
"A511360926FB7DA8EBF5CB5272F396AE06608422BE9792E2CE9BEF21BF55B7EF" +
"F8DC7EC8C99910D3F800",
"4B622DE1350119C45A9F2E2EF3DC5DF56A27FCDFCDDAF58CD69B903752D68C20" +
"0934E160B234E49EDE247601"},
Fp503: {
Fp503, "P-503", NewSike503(rand.Reader),
"testdata/PQCkemKAT_434.rsp",
"4032A90B6C036B7D2A83878AD116641AD319E420235A505F3F5C3DEC27C87A6C" +
"BA0792201D6E7B196C582D43CAF86CB2C7DEFA6598B543C946CDDF62EF9A328C" +
"8719B66BA5052231DAE13AF7D9CDEBB4ED327773C7AE0818F41AF1D28CD78B16" +
"C996232528235C8392B8FCFD925CB311B2A801B0402A90E527261EA32F2BEF67" +
"7C544908D5509B8AB7D7BF20456727AD358AD585306A0B28F6B2AA583CE8A3E0" +
"BB92D8CD55347D39D4E3C30D3D0F96EABB721A6968CDD143FE9227643CF697FB" +
"2DF0B71322B5EA1505D0DDBF70A2FD1193011F3BC18AA1E127C614B76969DCDA" +
"45A2072B519A1074FDA49F5C828450C6A007BF8D7CDDD5D2FC112119C679CA3A" +
"B16C6960B25F6C681A7DCED0F0E3901740D3DBF3A33011EB7DA460E8ADA80EE3" +
"45B2B71420950A9A803E4F11330EB91CCABB1EEE4D875A109D7724ABD201272C" +
"0B4981BDCDFA70F3430A89D2A88EEED474CF0CFAC65CE883F44B4722FA280C6F" +
"A9C4724D414B35AF69D6ECB21BFDA23BFF6B66C22C2451DC8E1C",
"7BF6938C975658AEB8B4D37CFFBDE25D97E561F36C219A0E8FE645816DBBC7ED7B57" +
"7700AE8DC3138E97A0C3F6F002065C92A0B1B8180208"},
Fp751: {
Fp751, "P-751", NewSike751(rand.Reader),
"testdata/PQCkemKAT_644.rsp",
"E1A758EC0D418BFE86D8077B5BB169133C06C1F2A067D8B202D9D058FFC51F63" +
"FD26155A6577C74BA7F1A27E7BA51982517B923615DEB00BE408920A07831DF5" +
"978CFDDD0BF690A264353A4A16B666F90586D7F89A193CE09375D389C1379A7A" +
"528581C3ACB002CD2DC4F0FD672568FF9050BA8365C7FEFC5E6ED089B921DE68" +
"04091A0744DE3EB14D426A3F7DA215C50312617C1C2697243980D06056F2CCE8" +
"8AE7AE73C7343C0B7104C9F2870A94FED744CF6E94630514B6CEAB0E64733BB6" +
"FA67B931E5D8206010475CBE8BC587248D65D89D8CD9C8BBFA93E8B5F9EB9130" +
"773DED665D52ABBD91C4C8C255F73C0FC82501AE33330E9F308DE7177CBF83E4" +
"E26E334D7CB09019E638147FC58ED372AF660F14C194BC80E9666325C98E0F80" +
"877271D4A6BF514F603703D8A697874CD50A34D92F5AAEA84633CCF96801BD51" +
"7BF425DEE4A32AAF06684052473EA14643C3D535440FB2240A988D09F297C5A3" +
"88CB3DE60ED943F124034B90EFF611221F80F78EC124956338A105F6636B063D" +
"7E48BFBD5D614310FB97D86F122E4AE6F9DDF4977A93ED7D0CE2A94E346A1A03" +
"D3219CF21907B85A5BCDC713F93A4406A22E03B1655A66E1F6741A2F953E6FE0" +
"868B2614BABEF1943BBBCB1B66D3E7017E533EA84F291240B56AB33EF1DC3F3D" +
"E99DBF9E8BE51A0076E462BCDD825EA96D7F63C99177C305C257B31461F4C23D" +
"43115F0220409E8880BBB2468586D03461E807BE824B693874911B2B52AF06FD" +
"BDC47F5A0159729641A7C950AB9E03F2DC045135",
"0001020304050607080900010203040506070809000102030405060708090102" +
"8626ED79D451140800E03B59B956F8210E556067407D13DC90FA9E8B872BFB8F" +
"AB0A7289852106E40538D3575C500201"},
}
// Encrypt, Decrypt, check if input/output plaintext is the same.
func testPKERoundTrip(t *testing.T, v sikeVec) {
// Message to be encrypted
var pt [common.MaxMsgBsz]byte
var params = common.Params(v.id)
var ct = make([]byte, v.kem.CiphertextSize())
var msg = make([]byte, params.MsgLen)
for i := range msg {
msg[i] = byte(i)
}
// Import keys
pkB := NewPublicKey(params.ID, KeyVariantSike)
skB := NewPrivateKey(params.ID, KeyVariantSike)
pkHex, err := hex.DecodeString(v.PkB)
Ok(t, err, "Test vector wrong")
skHex, err := hex.DecodeString(v.PrB)
Ok(t, err, "Test vector wrong")
err = pkB.Import(pkHex)
Ok(t, err, "Public key import failed")
err = skB.Import(skHex)
Ok(t, err, "Private key import failed")
err = v.kem.encrypt(ct, rand.Reader, pkB, msg[:])
Ok(t, err, "PKE roundtrip - encryption failed")
ptLen, err := v.kem.decrypt(pt[:], skB, ct)
Ok(t, err, "PKE roundtrip - decription failed")
if !bytes.Equal(pt[:ptLen], msg[:]) {
t.Errorf("Decryption failed \n got : %X\n exp : %X", pt[:ptLen], msg)
}
}
// Generate key and check if can encrypt.
func testPKEKeyGeneration(t *testing.T, v sikeVec) {
var err error
var params = common.Params(v.id)
var pt [common.MaxMsgBsz]byte
var msg = make([]byte, params.MsgLen)
var ct = make([]byte, v.kem.CiphertextSize())
// static buffer to ensure no overrides
var pk = NewPublicKey(v.id, KeyVariantSike)
var sk = NewPrivateKey(v.id, KeyVariantSike)
for i := range msg {
msg[i] = byte(i)
}
err = sk.Generate(rand.Reader)
Ok(t, err, "PKE key generation")
sk.GeneratePublicKey(pk)
err = v.kem.encrypt(ct, rand.Reader, pk, msg[:])
Ok(t, err, "PKE encryption")
ptLen, err := v.kem.decrypt(pt[:], sk, ct)
Ok(t, err, "PKE key decryption")
if !bytes.Equal(pt[:ptLen], msg[:]) {
t.Fatalf("Decryption failed \n got : %X\n exp : %X", pt, msg)
}
}
func testNegativePKE(t *testing.T, v sikeVec) {
var err error
var msg [common.MaxMsgBsz]byte
var ct = make([]byte, v.kem.CiphertextSize())
var pk = NewPublicKey(v.id, KeyVariantSike)
var sk = NewPrivateKey(v.id, KeyVariantSike)
// Generate key
err = sk.Generate(rand.Reader)
Ok(t, err, "key generation")
sk.GeneratePublicKey(pk)
// bytelen(msg) - 1
err = v.kem.encrypt(ct, rand.Reader, pk, msg[:v.kem.params.KemSize+8-1])
if err == nil {
t.Error(msg)
}
for _, v := range ct {
if v != 0 {
t.Fatal("Returned ciphertext must be not changed")
}
}
}
func testKEMRoundTrip(t *testing.T, pkB, skB []byte, v sikeVec) {
// Import keys
var err error
var ssE [common.MaxSharedSecretBsz]byte
var ssD [common.MaxSharedSecretBsz]byte
var pk = NewPublicKey(v.id, KeyVariantSike)
var sk = NewPrivateKey(v.id, KeyVariantSike)
var ct = make([]byte, v.kem.CiphertextSize())
var ssBsz = v.kem.SharedSecretSize()
err = pk.Import(pkB)
Ok(t, err, "Public key import failed")
err = sk.Import(skB)
Ok(t, err, "Private key import failed")
v.kem.Reset()
err = v.kem.Encapsulate(ct, ssE[:], pk)
Ok(t, err, "Encapsulation failed")
v.kem.Reset()
err = v.kem.Decapsulate(ssD[:ssBsz], sk, pk, ct)
Ok(t, err, "Decapsulation failed")
if !bytes.Equal(ssE[:v.kem.SharedSecretSize()], ssD[:v.kem.SharedSecretSize()]) {
t.Errorf("Shared secrets from decapsulation and encapsulation differ [%s]", v.name)
}
}
func testKEMKeyGeneration(t *testing.T, v sikeVec) {
var ssE [common.MaxSharedSecretBsz]byte
var ssD [common.MaxSharedSecretBsz]byte
var ct = make([]byte, v.kem.CiphertextSize())
sk := NewPrivateKey(v.id, KeyVariantSike)
pk := NewPublicKey(v.id, KeyVariantSike)
Ok(t, sk.Generate(rand.Reader), "error: key generation")
sk.GeneratePublicKey(pk)
// calculated shared secret
v.kem.Reset()
err := v.kem.Encapsulate(ct, ssE[:], pk)
Ok(t, err, "encapsulation failed")
v.kem.Reset()
err = v.kem.Decapsulate(ssD[:v.kem.SharedSecretSize()], sk, pk, ct)
Ok(t, err, "decapsulation failed")
if !bytes.Equal(ssE[:], ssD[:]) {
t.Fatalf("KEM failed \n encapsulated: %X\n decapsulated: %X", ssD[:], ssE[:])
}
}
func testNegativeKEM(t *testing.T, v sikeVec) {
var ssE [common.MaxSharedSecretBsz]byte
var ssD [common.MaxSharedSecretBsz]byte
var ssTmp [common.MaxSharedSecretBsz]byte
var ct = make([]byte, v.kem.CiphertextSize())
var ssBsz = v.kem.SharedSecretSize()
sk := NewPrivateKey(v.id, KeyVariantSike)
pk := NewPublicKey(v.id, KeyVariantSike)
Ok(t, sk.Generate(rand.Reader), "error: key generation")
sk.GeneratePublicKey(pk)
v.kem.Reset()
err := v.kem.Encapsulate(ct, ssE[:], pk)
Ok(t, err, "pre-requisite for a test failed")
// Try decapsulate too small ciphertext
v.kem.Reset()
Ok(
t,
testPanic(func() { _ = v.kem.Decapsulate(ssTmp[:ssBsz], sk, pk, ct[:len(ct)-2]) }),
"Decapsulation must panic if ciphertext is too small")
ctTmp := make([]byte, len(ct)+1)
// Try decapsulate too big ciphertext
v.kem.Reset()
Ok(
t,
testPanic(func() { _ = v.kem.Decapsulate(ssTmp[:ssBsz], sk, pk, ctTmp) }),
"Decapsulation must panic if ciphertext is too big")
// Change ciphertext
ct[0] = ct[0] - 1
v.kem.Reset()
err = v.kem.Decapsulate(ssD[:ssBsz], sk, pk, ct)
Ok(t, err, "decapsulation returns error when invalid ciphertext provided")
if bytes.Equal(ssE[:], ssD[:]) {
// no idea how this could ever happen, but it would be very bad
t.Error("critical error")
}
// Try encapsulating with SIDH key
pkSidh := NewPublicKey(v.id, KeyVariantSidhB)
prSidh := NewPrivateKey(v.id, KeyVariantSidhB)
v.kem.Reset()
Ok(
t,
testPanic(func() { _ = v.kem.Encapsulate(ct, ssE[:], pkSidh) }),
"encapsulation accepts SIDH public key")
// Try decapsulating with SIDH key
v.kem.Reset()
Ok(
t,
testPanic(func() { _ = v.kem.Decapsulate(ssD[:ssBsz], prSidh, pk, ct) }),
"encapsulation accepts SIDH public key")
}
// In case invalid ciphertext is provided, SIKE's decapsulation must
// return same (but unpredictable) result for a given key.
func testNegativeKEMSameWrongResult(t *testing.T, v sikeVec) {
var ssE [common.MaxSharedSecretBsz]byte
var ssD1 [common.MaxSharedSecretBsz]byte
var ssD2 [common.MaxSharedSecretBsz]byte
var ct = make([]byte, v.kem.CiphertextSize())
var ssBsz = v.kem.SharedSecretSize()
sk := NewPrivateKey(v.id, KeyVariantSike)
pk := NewPublicKey(v.id, KeyVariantSike)
Ok(t, sk.Generate(rand.Reader), "error: key generation")
sk.GeneratePublicKey(pk)
v.kem.Reset()
err := v.kem.Encapsulate(ct, ssE[:], pk)
Ok(t, err, "pre-requisite for a test failed")
// make ciphertext wrong
ct[0] = ct[0] - 1
v.kem.Reset()
err = v.kem.Decapsulate(ssD1[:ssBsz], sk, pk, ct)
Ok(t, err, "pre-requisite for a test failed")
// change secret keysecond decapsulation must be done with same, but imported private key
var expSk [common.MaxSikePrivateKeyBsz]byte
sk.Export(expSk[:])
// create new private key
sk = NewPrivateKey(v.id, KeyVariantSike)
Ok(t, sk.Import(expSk[:sk.Size()]), "import failed")
// try decapsulating again.
v.kem.Reset()
err = v.kem.Decapsulate(ssD2[:ssBsz], sk, pk, ct)
Ok(t, err, "pre-requisite for a test failed")
// ssD1 must be same as ssD2
if !bytes.Equal(ssD1[:], ssD2[:]) {
t.Error("decapsulation is insecure")
}
// ssD1 and ssD2 must be different than ssE
if bytes.Equal(ssE[:], ssD1[:]) || bytes.Equal(ssE[:], ssD2[:]) {
// this test requires that decapsulation returns wrong result
t.Errorf("test implementation error")
}
}
func testKAT(t *testing.T, v sikeVec) {
ssGot := make([]byte, v.kem.SharedSecretSize())
testDecapsulation := func(pk, sk, ct, ssExpected []byte) {
var pubKey = NewPublicKey(v.id, KeyVariantSike)
var prvKey = NewPrivateKey(v.id, KeyVariantSike)
if pubKey.Import(pk) != nil || prvKey.Import(sk) != nil {
panic("sike test: can't load KAT")
}
err := v.kem.Decapsulate(ssGot, prvKey, pubKey, ct)
Ok(t, err, "sike test: can't perform degcapsulation KAT")
if !bytes.Equal(ssGot, ssExpected) {
t.Fatalf("KAT decapsulation failed\n")
}
}
readAndCheckLine := func(r *bufio.Reader) []byte {
// Read next line from buffer
line, isPrefix, err := r.ReadLine()
if err != nil || isPrefix {
panic("Wrong format of input file")
}
// Function expects that line is in format "KEY = HEX_VALUE". Get
// value, which should be a hex string
hexst := strings.Split(string(line), "=")[1]
hexst = strings.TrimSpace(hexst)
// Convert value to byte string
ret, err := hex.DecodeString(hexst)
if err != nil {
panic("Wrong format of input file")
}
return ret
}
testKeygen := func(pk, sk []byte) bool {
// Import provided private key
var prvKey = NewPrivateKey(v.id, KeyVariantSike)
var pubKey = NewPublicKey(v.id, KeyVariantSike)
var pubKeyBytes = make([]byte, pubKey.Size())
Ok(t, prvKey.Import(sk), "Can't load KAT")
// Generate public key
prvKey.GeneratePublicKey(pubKey)
pubKey.Export(pubKeyBytes)
return bytes.Equal(pubKeyBytes, pk)
}
f, err := os.Open(v.KatFile)
if err != nil {
t.Fatal(err)
}
r := bufio.NewReader(f)
for {
line, isPrefix, err := r.ReadLine()
if err != nil || isPrefix {
if err == io.EOF {
break
} else {
t.Fatal(err)
}
}
if len(strings.TrimSpace(string(line))) == 0 || line[0] == '#' {
continue
}
// count
_ = strings.Split(string(line), "=")[1]
// seed
_ = readAndCheckLine(r)
// pk
pk := readAndCheckLine(r)
// sk (secret key in test vector is concatenation of
// MSG + SECRET_BOB_KEY + PUBLIC_BOB_KEY. We use only MSG+SECRET_BOB_KEY
sk := readAndCheckLine(r)
sk = sk[:v.kem.params.MsgLen+int(v.kem.params.B.SecretByteLen)]
// ct
ct := readAndCheckLine(r)
// ss
ss := readAndCheckLine(r)
testKeygen(pk, sk)
testDecapsulation(pk, sk, ct, ss)
testKEMRoundTrip(t, pk, sk, v)
}
}
// Interface to "testing"
/* -------------------------------------------------------------------------
Wrappers for 'testing' SIDH
-------------------------------------------------------------------------*/
func testSike(t *testing.T, m *map[uint8]sikeVec, f func(*testing.T, sikeVec)) {
for i := range *m {
v := (*m)[i]
t.Run(v.name, func(t *testing.T) { f(t, v) })
}
}
func TestPKERoundTrip(t *testing.T) { testSike(t, &tdataSike, testPKERoundTrip) }
func TestPKEKeyGeneration(t *testing.T) { testSike(t, &tdataSike, testPKEKeyGeneration) }
func TestNegativePKE(t *testing.T) { testSike(t, &tdataSike, testNegativePKE) }
func TestKEMKeyGeneration(t *testing.T) { testSike(t, &tdataSike, testKEMKeyGeneration) }
func TestNegativeKEM(t *testing.T) { testSike(t, &tdataSike, testNegativeKEM) }
func TestKAT(t *testing.T) { testSike(t, &tdataSike, testKAT) }
func TestNegativeKEMSameWrongResult(t *testing.T) {
testSike(t, &tdataSike, testNegativeKEMSameWrongResult)
}
func TestKEMRoundTrip(t *testing.T) {
for _, val := range tdataSike {
// fmt.Printf("\tTesting: %s\n", val.name)
pk, err := hex.DecodeString(val.PkB)
Ok(t, err, "public key B not a number")
sk, err := hex.DecodeString(val.PrB)
Ok(t, err, "private key B not a number")
testKEMRoundTrip(t, pk, sk, val)
}
}
/* -------------------------------------------------------------------------
Benchmarking
-------------------------------------------------------------------------*/
func benchSike(t *testing.B, m *map[uint8]sikeVec, f func(*testing.B, sikeVec)) {
for i := range *m {
v := (*m)[i]
t.Run(v.name, func(t *testing.B) { f(t, v) })
}
}
func benchKeygen(b *testing.B, v sikeVec) {
pub := NewPublicKey(v.id, KeyVariantSike)
prv := NewPrivateKey(v.id, KeyVariantSike)
_ = prv.Generate(rand.Reader)
b.ResetTimer()
for n := 0; n < b.N; n++ {
prv.GeneratePublicKey(pub)
}
}
func benchmarkEncaps(b *testing.B, v sikeVec) {
pub := NewPublicKey(v.id, KeyVariantSike)
prv := NewPrivateKey(v.id, KeyVariantSike)
if prv.Generate(rand.Reader) != nil {
b.FailNow()
}
prv.GeneratePublicKey(pub)
var ct [common.MaxCiphertextBsz]byte
var ss [common.MaxSharedSecretBsz]byte
b.ResetTimer()
for n := 0; n < b.N; n++ {
v.kem.Reset()
_ = v.kem.Encapsulate(ct[:], ss[:], pub)
}
}
func benchmarkDecaps(b *testing.B, v sikeVec) {
var ct [common.MaxCiphertextBsz]byte
var ss [common.MaxSharedSecretBsz]byte
var ssBsz = v.kem.SharedSecretSize()
pkA := NewPublicKey(v.id, KeyVariantSike)
prvA := NewPrivateKey(v.id, KeyVariantSike)
pkB := NewPublicKey(v.id, KeyVariantSike)
prvB := NewPrivateKey(v.id, KeyVariantSike)
if prvA.Generate(rand.Reader) != nil || prvB.Generate(rand.Reader) != nil {
b.FailNow()
}
prvA.GeneratePublicKey(pkA)
prvB.GeneratePublicKey(pkB)
v.kem.Reset()
err := v.kem.Encapsulate(ct[:], ss[:], pkA)
if err != nil {
b.FailNow()
}
ctSlc := ct[:v.kem.CiphertextSize()]
b.ResetTimer()
for n := 0; n < b.N; n++ {
v.kem.Reset()
_ = v.kem.Decapsulate(ss[:ssBsz], prvA, pkB, ctSlc)
}
}
func BenchmarkKeygen(b *testing.B) { benchSike(b, &tdataSike, benchKeygen) }
func BenchmarkEncaps(b *testing.B) { benchSike(b, &tdataSike, benchmarkEncaps) }
func BenchmarkDecaps(b *testing.B) { benchSike(b, &tdataSike, benchmarkDecaps) }
func ExampleKEM() {
// Allice's key pair
prvA := NewPrivateKey(Fp503, KeyVariantSike)
pubA := NewPublicKey(Fp503, KeyVariantSike)
// Bob's key pair
prvB := NewPrivateKey(Fp503, KeyVariantSike)
pubB := NewPublicKey(Fp503, KeyVariantSike)
// Generate keypair for Allice
err := prvA.Generate(rand.Reader)
if err != nil {
panic(err)
}
prvA.GeneratePublicKey(pubA)
// Generate keypair for Bob
err = prvB.Generate(rand.Reader)
if err != nil {
panic(err)
}
prvB.GeneratePublicKey(pubB)
// Initialize internal KEM structures
var kem = NewSike503(rand.Reader)
// Create buffers for ciphertext, shared secret received
// from encapsulation and shared secret from decapsulation
ct := make([]byte, kem.CiphertextSize())
ssE := make([]byte, kem.SharedSecretSize())
ssD := make([]byte, kem.SharedSecretSize())
// Allice performs encapsulation with Bob's public key
err = kem.Encapsulate(ct, ssE, pubB)
if err != nil {
panic(err)
}
// Bob performs decapsulation with his key pair
err = kem.Decapsulate(ssD, prvB, pubB, ct)
if err != nil {
panic(err)
}
fmt.Printf("%t\n", bytes.Equal(ssE, ssD))
// Bob performs encapsulation with Allices's public key
err = kem.Encapsulate(ct, ssE, pubA)
if err != nil {
panic(err)
}
// Allice performs decapsulation with hers key pair
err = kem.Decapsulate(ssD, prvA, pubA, ct)
if err != nil {
panic(err)
}
fmt.Printf("%t\n", bytes.Equal(ssE, ssD))
// Output:
// true
// true
}