mirror of
https://github.com/henrydcase/nobs.git
synced 2024-11-26 17:11:22 +00:00
325 lines
11 KiB
Go
325 lines
11 KiB
Go
package p751toolbox
|
|
|
|
// A point on the projective line P^1(F_{p^2}).
|
|
//
|
|
// This is used to work projectively with the curve coefficients.
|
|
type ProjectiveCurveParameters struct {
|
|
A ExtensionFieldElement
|
|
C ExtensionFieldElement
|
|
}
|
|
|
|
// Stores curve projective parameters equivalent to A/C. Meaning of the
|
|
// values depends on the context. When working with isogenies over
|
|
// subgroup that are powers of:
|
|
// * three then A=(A+2C)/4; C=(A-2C)/4
|
|
// * four then A=(A+2C)/4; C=4C
|
|
// See Appendix A of SIKE for more details
|
|
type CurveCoefficientsEquiv struct {
|
|
A ExtensionFieldElement
|
|
C ExtensionFieldElement
|
|
}
|
|
|
|
// A point on the projective line P^1(F_{p^2}).
|
|
//
|
|
// This represents a point on the Kummer line of a Montgomery curve. The
|
|
// curve is specified by a ProjectiveCurveParameters struct.
|
|
type ProjectivePoint struct {
|
|
X ExtensionFieldElement
|
|
Z ExtensionFieldElement
|
|
}
|
|
|
|
// A point on the projective line P^1(F_p).
|
|
//
|
|
// This represents a point on the (Kummer line) of the prime-field subgroup of
|
|
// the base curve E_0(F_p), defined by E_0 : y^2 = x^3 + x.
|
|
type ProjectivePrimeFieldPoint struct {
|
|
X PrimeFieldElement
|
|
Z PrimeFieldElement
|
|
}
|
|
|
|
func (params *ProjectiveCurveParameters) FromAffine(a *ExtensionFieldElement) {
|
|
params.A = *a
|
|
params.C.One()
|
|
}
|
|
|
|
// Computes j-invariant for a curve y2=x3+A/Cx+x with A,C in F_(p^2). Result
|
|
// is returned in jBytes buffer, encoded in little-endian format. Caller
|
|
// provided jBytes buffer has to be big enough to j-invariant value. In case
|
|
// of SIDH, buffer size must be at least size of shared secret.
|
|
// Implementation corresponds to Algorithm 9 from SIKE.
|
|
func (cparams *ProjectiveCurveParameters) Jinvariant(jBytes []byte) {
|
|
var j, t0, t1 ExtensionFieldElement
|
|
|
|
j.Square(&cparams.A) // j = A^2
|
|
t1.Square(&cparams.C) // t1 = C^2
|
|
t0.Add(&t1, &t1) // t0 = t1 + t1
|
|
t0.Sub(&j, &t0) // t0 = j - t0
|
|
t0.Sub(&t0, &t1) // t0 = t0 - t1
|
|
j.Sub(&t0, &t1) // t0 = t0 - t1
|
|
t1.Square(&t1) // t1 = t1^2
|
|
j.Mul(&j, &t1) // t0 = t0 * t1
|
|
t0.Add(&t0, &t0) // t0 = t0 + t0
|
|
t0.Add(&t0, &t0) // t0 = t0 + t0
|
|
t1.Square(&t0) // t1 = t0^2
|
|
t0.Mul(&t0, &t1) // t0 = t0 * t1
|
|
t0.Add(&t0, &t0) // t0 = t0 + t0
|
|
t0.Add(&t0, &t0) // t0 = t0 + t0
|
|
j.Inv(&j) // j = 1/j
|
|
j.Mul(&t0, &j) // j = t0 * j
|
|
|
|
j.ToBytes(jBytes)
|
|
}
|
|
|
|
// Given affine points x(P), x(Q) and x(Q-P) in a extension field F_{p^2}, function
|
|
// recorvers projective coordinate A of a curve. This is Algorithm 10 from SIKE.
|
|
func (curve *ProjectiveCurveParameters) RecoverCoordinateA(xp, xq, xr *ExtensionFieldElement) {
|
|
var t0, t1 ExtensionFieldElement
|
|
|
|
t1.Add(xp, xq) // t1 = Xp + Xq
|
|
t0.Mul(xp, xq) // t0 = Xp * Xq
|
|
curve.A.Mul(xr, &t1) // A = X(q-p) * t1
|
|
curve.A.Add(&curve.A, &t0) // A = A + t0
|
|
t0.Mul(&t0, xr) // t0 = t0 * X(q-p)
|
|
curve.A.Sub(&curve.A, &oneExtensionField) // A = A - 1
|
|
t0.Add(&t0, &t0) // t0 = t0 + t0
|
|
t1.Add(&t1, xr) // t1 = t1 + X(q-p)
|
|
t0.Add(&t0, &t0) // t0 = t0 + t0
|
|
curve.A.Square(&curve.A) // A = A^2
|
|
t0.Inv(&t0) // t0 = 1/t0
|
|
curve.A.Mul(&curve.A, &t0) // A = A * t0
|
|
curve.A.Sub(&curve.A, &t1) // A = A - t1
|
|
}
|
|
|
|
// Computes equivalence (A:C) ~ (A+2C : A-2C)
|
|
func (curve *ProjectiveCurveParameters) CalcCurveParamsEquiv3() CurveCoefficientsEquiv {
|
|
var coef CurveCoefficientsEquiv
|
|
var tmp ExtensionFieldElement
|
|
|
|
// TODO: Calling code sets C=1, always (all functions). Currently only tests
|
|
// require C to be customizable.
|
|
|
|
// C24 = 2*C
|
|
tmp.Add(&curve.C, &curve.C)
|
|
// A24_plus = A + 2C
|
|
coef.A.Add(&curve.A, &tmp)
|
|
// A24_minus = A - 2C
|
|
coef.C.Sub(&curve.A, &tmp)
|
|
return coef
|
|
}
|
|
|
|
// Computes equivalence (A:C) ~ (A+2C : 2C)
|
|
func (cparams *ProjectiveCurveParameters) CalcCurveParamsEquiv4() CurveCoefficientsEquiv {
|
|
var coefEq CurveCoefficientsEquiv
|
|
// C = 2*cparams.C
|
|
coefEq.C.Add(&cparams.C, &cparams.C)
|
|
// A24_plus = A + 2C
|
|
coefEq.A.Add(&cparams.A, &coefEq.C)
|
|
// C24 = 4*C
|
|
coefEq.C.Add(&coefEq.C, &coefEq.C)
|
|
return coefEq
|
|
}
|
|
|
|
// Helper function for RightToLeftLadder(). Returns A+2C / 4.
|
|
func (cparams *ProjectiveCurveParameters) calcAplus2Over4() (ret ExtensionFieldElement) {
|
|
var tmp ExtensionFieldElement
|
|
// 2C
|
|
tmp.Add(&cparams.C, &cparams.C)
|
|
// A+2C
|
|
ret.Add(&cparams.A, &tmp)
|
|
// 1/4C
|
|
tmp.Add(&tmp, &tmp).Inv(&tmp)
|
|
// A+2C/4C
|
|
ret.Mul(&ret, &tmp)
|
|
return
|
|
}
|
|
|
|
// Recovers (A:C) curve parameters from projectively equivalent (A+2C:A-2C).
|
|
func (cparams *ProjectiveCurveParameters) RecoverCurveCoefficients3(coefEq *CurveCoefficientsEquiv) {
|
|
cparams.A.Add(&coefEq.A, &coefEq.C)
|
|
cparams.A.Add(&cparams.A, &cparams.A)
|
|
cparams.C.Sub(&coefEq.A, &coefEq.C)
|
|
return
|
|
}
|
|
|
|
// Recovers (A:C) curve parameters from projectively equivalent (A+2C:2C).
|
|
func (cparams *ProjectiveCurveParameters) RecoverCurveCoefficients4(coefEq *CurveCoefficientsEquiv) {
|
|
var tmp ExtensionFieldElement
|
|
tmp.Add(&oneExtensionField, &oneExtensionField).Inv(&tmp)
|
|
cparams.C.Mul(&coefEq.C, &tmp)
|
|
cparams.A.Sub(&coefEq.A, &cparams.C)
|
|
cparams.C.Mul(&cparams.C, &tmp)
|
|
return
|
|
}
|
|
|
|
func (point *ProjectivePoint) FromAffinePrimeField(x *PrimeFieldElement) {
|
|
point.X.A = x.A
|
|
point.X.B = zeroExtensionField.B
|
|
point.Z = oneExtensionField
|
|
}
|
|
|
|
func (point *ProjectivePoint) FromAffine(x *ExtensionFieldElement) {
|
|
point.X = *x
|
|
point.Z = oneExtensionField
|
|
}
|
|
|
|
func (point *ProjectivePrimeFieldPoint) FromAffine(x *PrimeFieldElement) {
|
|
point.X = *x
|
|
point.Z = onePrimeField
|
|
}
|
|
|
|
func (point *ProjectivePoint) ToAffine() *ExtensionFieldElement {
|
|
affine_x := new(ExtensionFieldElement)
|
|
affine_x.Inv(&point.Z).Mul(affine_x, &point.X)
|
|
return affine_x
|
|
}
|
|
|
|
func (point *ProjectivePrimeFieldPoint) ToAffine() *PrimeFieldElement {
|
|
affine_x := new(PrimeFieldElement)
|
|
affine_x.Inv(&point.Z).Mul(affine_x, &point.X)
|
|
return affine_x
|
|
}
|
|
|
|
func (lhs *ProjectivePoint) VartimeEq(rhs *ProjectivePoint) bool {
|
|
var t0, t1 ExtensionFieldElement
|
|
t0.Mul(&lhs.X, &rhs.Z)
|
|
t1.Mul(&lhs.Z, &rhs.X)
|
|
return t0.VartimeEq(&t1)
|
|
}
|
|
|
|
func (lhs *ProjectivePrimeFieldPoint) VartimeEq(rhs *ProjectivePrimeFieldPoint) bool {
|
|
var t0, t1 PrimeFieldElement
|
|
t0.Mul(&lhs.X, &rhs.Z)
|
|
t1.Mul(&lhs.Z, &rhs.X)
|
|
return t0.VartimeEq(&t1)
|
|
}
|
|
|
|
func ProjectivePointConditionalSwap(xP, xQ *ProjectivePoint, choice uint8) {
|
|
ExtensionFieldConditionalSwap(&xP.X, &xQ.X, choice)
|
|
ExtensionFieldConditionalSwap(&xP.Z, &xQ.Z, choice)
|
|
}
|
|
|
|
func ProjectivePrimeFieldPointConditionalSwap(xP, xQ *ProjectivePrimeFieldPoint, choice uint8) {
|
|
PrimeFieldConditionalSwap(&xP.X, &xQ.X, choice)
|
|
PrimeFieldConditionalSwap(&xP.Z, &xQ.Z, choice)
|
|
}
|
|
|
|
// Combined coordinate doubling and differential addition. Takes projective points
|
|
// P,Q,Q-P and (A+2C)/4C curve E coefficient. Returns 2*P and P+Q calculated on E.
|
|
// Function is used only by RightToLeftLadder. Corresponds to Algorithm 5 of SIKE
|
|
func xDblAdd(P, Q, QmP *ProjectivePoint, a24 *ExtensionFieldElement) (dblP, PaQ ProjectivePoint) {
|
|
var t0, t1, t2 ExtensionFieldElement
|
|
xQmP, zQmP := &QmP.X, &QmP.Z
|
|
xPaQ, zPaQ := &PaQ.X, &PaQ.Z
|
|
x2P, z2P := &dblP.X, &dblP.Z
|
|
xP, zP := &P.X, &P.Z
|
|
xQ, zQ := &Q.X, &Q.Z
|
|
|
|
t0.Add(xP, zP) // t0 = Xp+Zp
|
|
t1.Sub(xP, zP) // t1 = Xp-Zp
|
|
x2P.Square(&t0) // 2P.X = t0^2
|
|
t2.Sub(xQ, zQ) // t2 = Xq-Zq
|
|
xPaQ.Add(xQ, zQ) // Xp+q = Xq+Zq
|
|
t0.Mul(&t0, &t2) // t0 = t0 * t2
|
|
z2P.Mul(&t1, &t1) // 2P.Z = t1 * t1
|
|
t1.Mul(&t1, xPaQ) // t1 = t1 * Xp+q
|
|
t2.Sub(x2P, z2P) // t2 = 2P.X - 2P.Z
|
|
x2P.Mul(x2P, z2P) // 2P.X = 2P.X * 2P.Z
|
|
xPaQ.Mul(a24, &t2) // Xp+q = A24 * t2
|
|
zPaQ.Sub(&t0, &t1) // Zp+q = t0 - t1
|
|
z2P.Add(xPaQ, z2P) // 2P.Z = Xp+q + 2P.Z
|
|
xPaQ.Add(&t0, &t1) // Xp+q = t0 + t1
|
|
z2P.Mul(z2P, &t2) // 2P.Z = 2P.Z * t2
|
|
zPaQ.Square(zPaQ) // Zp+q = Zp+q ^ 2
|
|
xPaQ.Square(xPaQ) // Xp+q = Xp+q ^ 2
|
|
zPaQ.Mul(xQmP, zPaQ) // Zp+q = Xq-p * Zp+q
|
|
xPaQ.Mul(zQmP, xPaQ) // Xp+q = Zq-p * Xp+q
|
|
return
|
|
}
|
|
|
|
// Given the curve parameters, xP = x(P), and k >= 0, compute x2P = x([2^k]P).
|
|
//
|
|
// Returns x2P to allow chaining. Safe to overlap xP, x2P.
|
|
func (x2P *ProjectivePoint) Pow2k(params *CurveCoefficientsEquiv, xP *ProjectivePoint, k uint32) *ProjectivePoint {
|
|
var t0, t1 ExtensionFieldElement
|
|
|
|
*x2P = *xP
|
|
x, z := &x2P.X, &x2P.Z
|
|
|
|
for i := uint32(0); i < k; i++ {
|
|
t0.Sub(x, z) // t0 = Xp - Zp
|
|
t1.Add(x, z) // t1 = Xp + Zp
|
|
t0.Square(&t0) // t0 = t0 ^ 2
|
|
t1.Square(&t1) // t1 = t1 ^ 2
|
|
z.Mul(¶ms.C, &t0) // Z2p = C24 * t0
|
|
x.Mul(z, &t1) // X2p = Z2p * t1
|
|
t1.Sub(&t1, &t0) // t1 = t1 - t0
|
|
t0.Mul(¶ms.A, &t1) // t0 = A24+ * t1
|
|
z.Add(z, &t0) // Z2p = Z2p + t0
|
|
z.Mul(z, &t1) // Zp = Z2p * t1
|
|
}
|
|
|
|
return x2P
|
|
}
|
|
|
|
// Given the curve parameters, xP = x(P), and k >= 0, compute x3P = x([3^k]P).
|
|
//
|
|
// Returns x3P to allow chaining. Safe to overlap xP, xR.
|
|
func (x3P *ProjectivePoint) Pow3k(params *CurveCoefficientsEquiv, xP *ProjectivePoint, k uint32) *ProjectivePoint {
|
|
var t0, t1, t2, t3, t4, t5, t6 ExtensionFieldElement
|
|
|
|
*x3P = *xP
|
|
x, z := &x3P.X, &x3P.Z
|
|
|
|
for i := uint32(0); i < k; i++ {
|
|
t0.Sub(x, z) // t0 = Xp - Zp
|
|
t2.Square(&t0) // t2 = t0^2
|
|
t1.Add(x, z) // t1 = Xp + Zp
|
|
t3.Square(&t1) // t3 = t1^2
|
|
t4.Add(&t1, &t0) // t4 = t1 + t0
|
|
t0.Sub(&t1, &t0) // t0 = t1 - t0
|
|
t1.Square(&t4) // t1 = t4^2
|
|
t1.Sub(&t1, &t3) // t1 = t1 - t3
|
|
t1.Sub(&t1, &t2) // t1 = t1 - t2
|
|
t5.Mul(&t3, ¶ms.A) // t5 = t3 * A24+
|
|
t3.Mul(&t3, &t5) // t3 = t5 * t3
|
|
t6.Mul(¶ms.C, &t2) // t6 = t2 * A24-
|
|
t2.Mul(&t2, &t6) // t2 = t2 * t6
|
|
t3.Sub(&t2, &t3) // t3 = t2 - t3
|
|
t2.Sub(&t5, &t6) // t2 = t5 - t6
|
|
t1.Mul(&t2, &t1) // t1 = t2 * t1
|
|
t2.Add(&t3, &t1) // t2 = t3 + t1
|
|
t2.Square(&t2) // t2 = t2^2
|
|
x.Mul(&t2, &t4) // X3p = t2 * t4
|
|
t1.Sub(&t3, &t1) // t1 = t3 - t1
|
|
t1.Square(&t1) // t1 = t1^2
|
|
z.Mul(&t1, &t0) // Z3p = t1 * t0
|
|
}
|
|
return x3P
|
|
}
|
|
|
|
// RightToLeftLadder is a right-to-left point multiplication that given the
|
|
// x-coordinate of P, Q and P-Q calculates the x-coordinate of R=Q+[scalar]P.
|
|
// nbits must be smaller or equal to len(scalar).
|
|
func RightToLeftLadder(c *ProjectiveCurveParameters, P, Q, PmQ *ProjectivePoint,
|
|
nbits uint, scalar []uint8) ProjectivePoint {
|
|
var R0, R2, R1 ProjectivePoint
|
|
|
|
aPlus2Over4 := c.calcAplus2Over4()
|
|
R1 = *P
|
|
R2 = *PmQ
|
|
R0 = *Q
|
|
|
|
// Iterate over the bits of the scalar, bottom to top
|
|
prevBit := uint8(0)
|
|
for i := uint(0); i < nbits; i++ {
|
|
bit := (scalar[i>>3] >> (i & 7) & 1)
|
|
swap := prevBit ^ bit
|
|
prevBit = bit
|
|
ProjectivePointConditionalSwap(&R1, &R2, swap)
|
|
R0, R2 = xDblAdd(&R0, &R2, &R1, &aPlus2Over4)
|
|
}
|
|
|
|
ProjectivePointConditionalSwap(&R1, &R2, prevBit)
|
|
return R1
|
|
}
|