1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-28 18:01:21 +00:00
nobs/dh/csidh/fp511.go
Jacob Appelbaum 20fffc2f35
add basic support for ppc64le, riscv64 (#48)
This change set modifies build metadata to add support for ppc64le
(POWER9) and riscv64 (RISC-V).  The arm64 and amd64 assembler
implementations are architecture specific and do not support ppc64le or
riscv64. On ppc64le or riscv64 a generic implementation is chosen.  The
drbg/internal/aes/cipher_noasm.go file was written by @mixmasala and
myself.

The csidh and sidh tests are extremely slow (>30m) on RISC-V using the
sifive,u54-mc (HiFive Unleashed) development board. The test timeout is
set to infinity on RISC-V by the top level Makefile as at least one test
does not finish within the default 10 minutes on RISC-V. On RISC-V the
csidh test finishes after around 30 minutes, the sidh test finishes
after around 71 minutes.

These changes were tested with amd64 (Intel Core i7), arm64 (Raspberry
Pi 4b), ppc64le (Talos POWER9, PowerNV T2P9D01 REV 1.00), and riscv64
(HighFive Unleashed, rv64imafdc,sifive,u54-mc).

The kernel versions of those systems follows:

Linux rpi4 5.13.0-1009-raspi #10-Ubuntu SMP PREEMPT Mon Oct 25 13:58:43
UTC 2021 aarch64 aarch64 aarch64 GNU/Linux

Linux i7 5.8.0-63-generic #71-Ubuntu SMP Tue Jul 13 15:59:12 UTC 2021
x86_64 x86_64 x86_64 GNU/Linux

Linux power9 5.11.0-34-generic #36-Ubuntu SMP Thu Aug 26 19:19:54 UTC
2021 ppc64le ppc64le ppc64le GNU/Linux

Linux risc-v-unleashed-000 5.11.0-1022-generic #23~20.04.1-Ubuntu SMP
Thu Oct 21 10:16:27 UTC 2021 riscv64 riscv64 riscv64 GNU/Linux
2023-03-13 23:12:45 +00:00

291 lines
8.1 KiB
Go

// +build noasm amd64 arm64 ppc64le riscv64
package csidh
import (
"math/bits"
"golang.org/x/sys/cpu"
)
// CPU Capabilities. Those flags are referred by assembly code. According to
// https://github.com/golang/go/issues/28230, variables referred from the
// assembly must be in the same package.
// We declare variables not constants, in order to facilitate testing.
var (
// Signals support for BMI2 (MULX)
hasBMI2 = cpu.X86.HasBMI2 //nolint
// Signals support for ADX and BMI2
hasADXandBMI2 = cpu.X86.HasBMI2 && cpu.X86.HasADX
)
// Constant time select.
// if pick == 0xFF..FF (out = in1)
// if pick == 0 (out = in2)
// else out is undefined.
func ctPick64(which uint64, in1, in2 uint64) uint64 {
return (in1 & which) | (in2 & ^which)
}
// ctIsNonZero64 returns 0 in case i == 0, otherwise it returns 1.
// Constant-time.
func ctIsNonZero64(i uint64) int {
// In case i==0 then i-1 will set MSB. Only in such case (i OR ~(i-1))
// will result in MSB being not set (logical implication: (i-1)=>i is
// false iff (i-1)==0 and i==non-zero). In every other case MSB is
// set and hence function returns 1.
return int((i | (^(i - 1))) >> 63)
}
func mulGeneric(r, x, y *fp) {
var s fp // keeps intermediate results
var t1, t2 [9]uint64
var c, q uint64
for i := 0; i < numWords-1; i++ {
q = ((x[i] * y[0]) + s[0]) * pNegInv[0]
mul576(&t1, &p, q)
mul576(&t2, y, x[i])
// x[i]*y + q_i*p
t1[0], c = bits.Add64(t1[0], t2[0], 0)
t1[1], c = bits.Add64(t1[1], t2[1], c)
t1[2], c = bits.Add64(t1[2], t2[2], c)
t1[3], c = bits.Add64(t1[3], t2[3], c)
t1[4], c = bits.Add64(t1[4], t2[4], c)
t1[5], c = bits.Add64(t1[5], t2[5], c)
t1[6], c = bits.Add64(t1[6], t2[6], c)
t1[7], c = bits.Add64(t1[7], t2[7], c)
t1[8], _ = bits.Add64(t1[8], t2[8], c)
// s = (s + x[i]*y + q_i * p) / R
_, c = bits.Add64(t1[0], s[0], 0)
s[0], c = bits.Add64(t1[1], s[1], c)
s[1], c = bits.Add64(t1[2], s[2], c)
s[2], c = bits.Add64(t1[3], s[3], c)
s[3], c = bits.Add64(t1[4], s[4], c)
s[4], c = bits.Add64(t1[5], s[5], c)
s[5], c = bits.Add64(t1[6], s[6], c)
s[6], c = bits.Add64(t1[7], s[7], c)
s[7], _ = bits.Add64(t1[8], 0, c)
}
// last iteration stores result in r
q = ((x[numWords-1] * y[0]) + s[0]) * pNegInv[0]
mul576(&t1, &p, q)
mul576(&t2, y, x[numWords-1])
t1[0], c = bits.Add64(t1[0], t2[0], c)
t1[1], c = bits.Add64(t1[1], t2[1], c)
t1[2], c = bits.Add64(t1[2], t2[2], c)
t1[3], c = bits.Add64(t1[3], t2[3], c)
t1[4], c = bits.Add64(t1[4], t2[4], c)
t1[5], c = bits.Add64(t1[5], t2[5], c)
t1[6], c = bits.Add64(t1[6], t2[6], c)
t1[7], c = bits.Add64(t1[7], t2[7], c)
t1[8], _ = bits.Add64(t1[8], t2[8], c)
_, c = bits.Add64(t1[0], s[0], 0)
r[0], c = bits.Add64(t1[1], s[1], c)
r[1], c = bits.Add64(t1[2], s[2], c)
r[2], c = bits.Add64(t1[3], s[3], c)
r[3], c = bits.Add64(t1[4], s[4], c)
r[4], c = bits.Add64(t1[5], s[5], c)
r[5], c = bits.Add64(t1[6], s[6], c)
r[6], c = bits.Add64(t1[7], s[7], c)
r[7], _ = bits.Add64(t1[8], 0, c)
}
// Returns result of x<y operation.
func isLess(x, y *fp) bool {
for i := numWords - 1; i >= 0; i-- {
v, c := bits.Sub64(y[i], x[i], 0)
if c != 0 {
return false
}
if v != 0 {
return true
}
}
// x == y
return false
}
// r = x + y mod p.
func addRdc(r, x, y *fp) {
var c uint64
var t fp
r[0], c = bits.Add64(x[0], y[0], 0)
r[1], c = bits.Add64(x[1], y[1], c)
r[2], c = bits.Add64(x[2], y[2], c)
r[3], c = bits.Add64(x[3], y[3], c)
r[4], c = bits.Add64(x[4], y[4], c)
r[5], c = bits.Add64(x[5], y[5], c)
r[6], c = bits.Add64(x[6], y[6], c)
r[7], _ = bits.Add64(x[7], y[7], c)
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
var w = 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
// r = x - y.
func sub512(r, x, y *fp) uint64 {
var c uint64
r[0], c = bits.Sub64(x[0], y[0], 0)
r[1], c = bits.Sub64(x[1], y[1], c)
r[2], c = bits.Sub64(x[2], y[2], c)
r[3], c = bits.Sub64(x[3], y[3], c)
r[4], c = bits.Sub64(x[4], y[4], c)
r[5], c = bits.Sub64(x[5], y[5], c)
r[6], c = bits.Sub64(x[6], y[6], c)
r[7], c = bits.Sub64(x[7], y[7], c)
return c
}
// r = x - y mod p.
func subRdc(r, x, y *fp) {
var c uint64
// Same as sub512(r,x,y). Unfortunately
// compiler is not able to inline it.
r[0], c = bits.Sub64(x[0], y[0], 0)
r[1], c = bits.Sub64(x[1], y[1], c)
r[2], c = bits.Sub64(x[2], y[2], c)
r[3], c = bits.Sub64(x[3], y[3], c)
r[4], c = bits.Sub64(x[4], y[4], c)
r[5], c = bits.Sub64(x[5], y[5], c)
r[6], c = bits.Sub64(x[6], y[6], c)
r[7], c = bits.Sub64(x[7], y[7], c)
// if x<y => r=x-y+p
var w = 0 - c
r[0], c = bits.Add64(r[0], ctPick64(w, p[0], 0), 0)
r[1], c = bits.Add64(r[1], ctPick64(w, p[1], 0), c)
r[2], c = bits.Add64(r[2], ctPick64(w, p[2], 0), c)
r[3], c = bits.Add64(r[3], ctPick64(w, p[3], 0), c)
r[4], c = bits.Add64(r[4], ctPick64(w, p[4], 0), c)
r[5], c = bits.Add64(r[5], ctPick64(w, p[5], 0), c)
r[6], c = bits.Add64(r[6], ctPick64(w, p[6], 0), c)
r[7], _ = bits.Add64(r[7], ctPick64(w, p[7], 0), c)
}
// Fixed-window mod exp for fpBitLen bit value with 4 bit window. Returned
// result is a number in montgomery domain.
// r = b ^ e (mod p).
// Constant time.
func modExpRdcCommon(r, b, e *fp, fpBitLen int) {
var precomp [16]fp
var t fp
var c uint64
// Precompute step, computes an array of small powers of 'b'. As this
// algorithm implements 4-bit window, we need 2^4=16 of such values.
// b^0 = 1, which is equal to R from REDC.
precomp[0] = one // b ^ 0
precomp[1] = *b // b ^ 1
for i := 2; i < 16; i = i + 2 {
// OPTIMIZE: implement fast squering. Then interleaving fast squaring
// with multiplication should improve performance.
mulRdc(&precomp[i], &precomp[i/2], &precomp[i/2]) // sqr
mulRdc(&precomp[i+1], &precomp[i], b)
}
*r = one
for i := fpBitLen/4 - 1; i >= 0; i-- {
for j := 0; j < 4; j++ {
mulRdc(r, r, r)
}
// note: non resistant to cache SCA
idx := (e[i/16] >> uint((i%16)*4)) & 15
mulRdc(r, r, &precomp[idx])
}
// if p <= r < 2p then r = r-p
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
var w = 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
// modExpRdc does modular exponentation of 512-bit number.
// Constant-time.
func modExpRdc512(r, b, e *fp) {
modExpRdcCommon(r, b, e, 512)
}
// modExpRdc does modular exponentation of 64-bit number.
// Constant-time.
func modExpRdc64(r, b *fp, e uint64) {
modExpRdcCommon(r, b, &fp{e}, 64)
}
// isNonQuadRes checks whether value v is quadratic residue.
// Implementation uses Fermat's little theorem (or
// Euler's criterion)
// a^(p-1) == 1, hence
// (a^2) ((p-1)/2) == 1
// Which means v is a quadratic residue iff v^((p-1)/2) == 1.
// Caller provided v must be in montgomery domain.
// Returns 0 in case v is quadratic residue or 1 in case
// v is quadratic non-residue.
func (v *fp) isNonQuadRes() int {
var res fp
var b uint64
modExpRdc512(&res, v, &pMin1By2)
for i := range res {
b |= res[i] ^ one[i]
}
return ctIsNonZero64(b)
}
// isZero returns false in case v is equal to 0, otherwise
// true. Constant time.
func (v *fp) isZero() bool {
var r uint64
for i := 0; i < numWords; i++ {
r |= v[i]
}
return ctIsNonZero64(r) == 0
}
// equal checks if v is equal to in. Constant time.
func (v *fp) equal(in *fp) bool {
var r uint64
for i := range v {
r |= v[i] ^ in[i]
}
return ctIsNonZero64(r) == 0
}