1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-25 00:21:29 +00:00
nobs/dh/csidh/fp511_amd64.s
Kris Kwiatkowski 7efbbf4745 cSIDH-511: (#26)
Implementation of Commutative Supersingular Isogeny Diffie Hellman,
based on "A faster way to CSIDH" paper (2018/782).

* For fast isogeny calculation, implementation converts a curve from
  Montgomery to Edwards. All calculations are done on Edwards curve
  and then converted back to Montgomery.
* As multiplication in a field Fp511 is most expensive operation
  the implementation contains multiple multiplications. It has
  most performant, assembly implementation which uses BMI2 and
  ADOX/ADCX instructions for modern CPUs. It also contains
  slower implementation which will run on older CPUs

* Benchmarks (Intel SkyLake):

  BenchmarkGeneratePrivate   	    6459	    172213 ns/op	       0 B/op	       0 allocs/op
  BenchmarkGenerateKeyPair   	      25	  45800356 ns/op	       0 B/op	       0 allocs/op
  BenchmarkValidate          	     297	   3915983 ns/op	       0 B/op	       0 allocs/op
  BenchmarkValidateRandom    	  184683	      6231 ns/op	       0 B/op	       0 allocs/op
  BenchmarkValidateGenerated 	      25	  48481306 ns/op	       0 B/op	       0 allocs/op
  BenchmarkDerive            	      19	  60928763 ns/op	       0 B/op	       0 allocs/op
  BenchmarkDeriveGenerated   	       8	 137342421 ns/op	       0 B/op	       0 allocs/op
  BenchmarkXMul              	    2311	    494267 ns/op	       1 B/op	       0 allocs/op
  BenchmarkXAdd              	 2396754	       501 ns/op	       0 B/op	       0 allocs/op
  BenchmarkXDbl              	 2072690	       571 ns/op	       0 B/op	       0 allocs/op
  BenchmarkIsom              	   78004	     15171 ns/op	       0 B/op	       0 allocs/op
  BenchmarkFp512Sub          	224635152	         5.33 ns/op	       0 B/op	       0 allocs/op
  BenchmarkFp512Mul          	246633255	         4.90 ns/op	       0 B/op	       0 allocs/op
  BenchmarkCSwap             	233228547	         5.10 ns/op	       0 B/op	       0 allocs/op
  BenchmarkAddRdc            	87348240	        12.6 ns/op	       0 B/op	       0 allocs/op
  BenchmarkSubRdc            	95112787	        11.7 ns/op	       0 B/op	       0 allocs/op
  BenchmarkModExpRdc         	   25436	     46878 ns/op	       0 B/op	       0 allocs/op
  BenchmarkMulBmiAsm         	19527573	        60.1 ns/op	       0 B/op	       0 allocs/op
  BenchmarkMulGeneric        	 7117650	       164 ns/op	       0 B/op	       0 allocs/op

* Go code has very similar performance when compared to C
  implementation.
  Results from sidh_torturer (4e2996e12d68364761064341cbe1d1b47efafe23)
  github.com:henrydcase/sidh-torture/csidh

  | TestName         |Go        | C        |
  |------------------|----------|----------|
  |TestSharedSecret  | 57.95774 | 57.91092 |
  |TestKeyGeneration | 62.23614 | 58.12980 |
  |TestSharedSecret  | 55.28988 | 57.23132 |
  |TestKeyGeneration | 61.68745 | 58.66396 |
  |TestSharedSecret  | 63.19408 | 58.64774 |
  |TestKeyGeneration | 62.34022 | 61.62539 |
  |TestSharedSecret  | 62.85453 | 68.74503 |
  |TestKeyGeneration | 52.58518 | 58.40115 |
  |TestSharedSecret  | 50.77081 | 61.91699 |
  |TestKeyGeneration | 59.91843 | 61.09266 |
  |TestSharedSecret  | 59.97962 | 62.98151 |
  |TestKeyGeneration | 64.57525 | 56.22863 |
  |TestSharedSecret  | 56.40521 | 55.77447 |
  |TestKeyGeneration | 67.85850 | 58.52604 |
  |TestSharedSecret  | 60.54290 | 65.14052 |
  |TestKeyGeneration | 65.45766 | 58.42823 |

  On average Go implementation is 2% faster.
2019-11-25 15:03:29 +00:00

193 lines
6.9 KiB
ArmAsm

// +build amd64,!noasm
#include "textflag.h"
// Multipies 512-bit value by 64-bit value. Uses MULQ instruction to
// multiply 2 64-bit values.
//
// Result: x = (y * z) mod 2^512
//
// Registers used: AX, CX, DX, SI, DI, R8
//
// func mul512(a, b *Fp, c uint64)
TEXT ·mul512(SB), NOSPLIT, $0-24
MOVQ a+0(FP), DI // result
MOVQ b+8(FP), SI // multiplicand
// Check wether to use optimized implementation
CMPB ·hasBMI2(SB), $1
JE mul512_mulx
MOVQ c+16(FP), R10 // 64 bit multiplier, used by MULQ
MOVQ R10, AX; MULQ 0(SI); MOVQ DX, R11; MOVQ AX, 0(DI) //x[0]
MOVQ R10, AX; MULQ 8(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 8(DI) //x[1]
MOVQ R10, AX; MULQ 16(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 16(DI) //x[2]
MOVQ R10, AX; MULQ 24(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 24(DI) //x[3]
MOVQ R10, AX; MULQ 32(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 32(DI) //x[4]
MOVQ R10, AX; MULQ 40(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 40(DI) //x[5]
MOVQ R10, AX; MULQ 48(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 48(DI) //x[6]
MOVQ R10, AX; MULQ 56(SI); ADDQ R11, AX; MOVQ AX, 56(DI) //x[7]
RET
// Optimized for CPUs with BMI2
mul512_mulx:
MOVQ c+16(FP), DX // 64 bit multiplier, used by MULX
MULXQ 0(SI), AX, R10; MOVQ AX, 0(DI) // x[0]
MULXQ 8(SI), AX, R11; ADDQ R10, AX; MOVQ AX, 8(DI) // x[1]
MULXQ 16(SI), AX, R10; ADCQ R11, AX; MOVQ AX, 16(DI) // x[2]
MULXQ 24(SI), AX, R11; ADCQ R10, AX; MOVQ AX, 24(DI) // x[3]
MULXQ 32(SI), AX, R10; ADCQ R11, AX; MOVQ AX, 32(DI) // x[4]
MULXQ 40(SI), AX, R11; ADCQ R10, AX; MOVQ AX, 40(DI) // x[5]
MULXQ 48(SI), AX, R10; ADCQ R11, AX; MOVQ AX, 48(DI) // x[6]
MULXQ 56(SI), AX, R11; ADCQ R10, AX; MOVQ AX, 56(DI) // x[7]
RET
// Multipies 512-bit value by 64-bit value and returns 576-bit result. Uses MULQ instruction to
// multiply 2 64-bit values. Returns 576-bit result.
//
// Result: x = (y * z)
//
// Registers used: AX, CX, DX, SI, DI, R8
//
// func mul576(a, b *Fp, c uint64)
TEXT ·mul576(SB), NOSPLIT, $0-24
MOVQ a+0(FP), DI // result
MOVQ b+8(FP), SI // multiplicand
MOVQ c+16(FP), R10 // 64 bit multiplier, used by MULQ
MOVQ R10, AX; MULQ 0(SI); MOVQ DX, R11; MOVQ AX, 0(DI) //x[0]
MOVQ R10, AX; MULQ 8(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 8(DI) //x[1]
MOVQ R10, AX; MULQ 16(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 16(DI) //x[2]
MOVQ R10, AX; MULQ 24(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 24(DI) //x[3]
MOVQ R10, AX; MULQ 32(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 32(DI) //x[4]
MOVQ R10, AX; MULQ 40(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 40(DI) //x[5]
MOVQ R10, AX; MULQ 48(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ DX, R11; MOVQ AX, 48(DI) //x[6]
MOVQ R10, AX; MULQ 56(SI); ADDQ R11, AX; ADCQ $0, DX; MOVQ AX, 56(DI) //x[7]
MOVQ DX, 64(DI) //x[8]
RET
TEXT ·cswap512(SB),NOSPLIT,$0-17
MOVQ x+0(FP), DI
MOVQ y+8(FP), SI
MOVBLZX choice+16(FP), AX // AL = 0 or 1
// Make AX, so that either all bits are set or non
// AX = 0 or 1
NEGQ AX
// Fill xmm15. After this step first half of XMM15 is
// just zeros and second half is whatever in AX
MOVQ AX, X15
// Copy lower double word everywhere else. So that
// XMM15=AL|AL|AL|AL. As AX has either all bits set
// or non result will be that XMM15 has also either
// all bits set or non of them.
PSHUFD $0, X15, X15
#ifndef CSWAP_BLOCK
#define CSWAP_BLOCK(idx) \
MOVOU (idx*16)(DI), X0 \
MOVOU (idx*16)(SI), X1 \
\ // X2 = mask & (X0 ^ X1)
MOVO X1, X2 \
PXOR X0, X2 \
PAND X15, X2 \
\
PXOR X2, X0 \
PXOR X2, X1 \
\
MOVOU X0, (idx*16)(DI) \
MOVOU X1, (idx*16)(SI)
#endif
CSWAP_BLOCK(0)
CSWAP_BLOCK(1)
CSWAP_BLOCK(2)
CSWAP_BLOCK(3)
RET
// mulAsm implements montgomery multiplication interleaved with
// montgomery reduction. It uses MULX and ADCX/ADOX instructions.
// Implementation specific to 511-bit prime 'p'
//
// func mulBmiAsm(res, x, y *fp)
TEXT ·mulBmiAsm(SB),NOSPLIT,$8-24
MOVQ x+8(FP), DI // multiplicand
MOVQ y+16(FP), SI // multiplier
XORQ R8, R8
XORQ R9, R9
XORQ R10, R10
XORQ R11, R11
XORQ R12, R12
XORQ R13, R13
XORQ R14, R14
XORQ R15, R15
MOVQ BP, 0(SP)
XORQ BP, BP
// Uses BMI2 (MULX)
#ifdef MULS_MULX_512
#undef MULS_MULX_512
#endif
#define MULS_MULX_512(idx, r0, r1, r2, r3, r4, r5, r6, r7, r8) \
\ // Reduction step
MOVQ ( 0)(SI), DX \
MULXQ ( 8*idx)(DI), DX, CX \
ADDQ r0, DX \
MULXQ ·pNegInv(SB), DX, CX \
\
XORQ AX, AX \
MULXQ ·p+ 0(SB), AX, BX; ; ADOXQ AX, r0 \
MULXQ ·p+ 8(SB), AX, CX; ADCXQ BX, r1; ADOXQ AX, r1 \
MULXQ ·p+16(SB), AX, BX; ADCXQ CX, r2; ADOXQ AX, r2 \
MULXQ ·p+24(SB), AX, CX; ADCXQ BX, r3; ADOXQ AX, r3 \
MULXQ ·p+32(SB), AX, BX; ADCXQ CX, r4; ADOXQ AX, r4 \
MULXQ ·p+40(SB), AX, CX; ADCXQ BX, r5; ADOXQ AX, r5 \
MULXQ ·p+48(SB), AX, BX; ADCXQ CX, r6; ADOXQ AX, r6 \
MULXQ ·p+56(SB), AX, CX; ADCXQ BX, r7; ADOXQ AX, r7 \
MOVQ $0, AX ; ADCXQ CX, r8; ADOXQ AX, r8 \
\ // Multiplication step
MOVQ (8*idx)(DI), DX \
\
XORQ AX, AX \
MULXQ ( 0)(SI), AX, BX; ADOXQ AX, r0 \
MULXQ ( 8)(SI), AX, CX; ADCXQ BX, r1; ADOXQ AX, r1 \
MULXQ (16)(SI), AX, BX; ADCXQ CX, r2; ADOXQ AX, r2 \
MULXQ (24)(SI), AX, CX; ADCXQ BX, r3; ADOXQ AX, r3 \
MULXQ (32)(SI), AX, BX; ADCXQ CX, r4; ADOXQ AX, r4 \
MULXQ (40)(SI), AX, CX; ADCXQ BX, r5; ADOXQ AX, r5 \
MULXQ (48)(SI), AX, BX; ADCXQ CX, r6; ADOXQ AX, r6 \
MULXQ (56)(SI), AX, CX; ADCXQ BX, r7; ADOXQ AX, r7 \
MOVQ $0, AX ; ADCXQ CX, r8; ADOXQ AX, r8
MULS_MULX_512(0, R8, R9, R10, R11, R12, R13, R14, R15, BP)
MULS_MULX_512(1, R9, R10, R11, R12, R13, R14, R15, BP, R8)
MULS_MULX_512(2, R10, R11, R12, R13, R14, R15, BP, R8, R9)
MULS_MULX_512(3, R11, R12, R13, R14, R15, BP, R8, R9, R10)
MULS_MULX_512(4, R12, R13, R14, R15, BP, R8, R9, R10, R11)
MULS_MULX_512(5, R13, R14, R15, BP, R8, R9, R10, R11, R12)
MULS_MULX_512(6, R14, R15, BP, R8, R9, R10, R11, R12, R13)
MULS_MULX_512(7, R15, BP, R8, R9, R10, R11, R12, R13, R14)
#undef MULS_MULX_512
MOVQ res+0(FP), DI
MOVQ BP, ( 0)(DI)
MOVQ R8, ( 8)(DI)
MOVQ R9, (16)(DI)
MOVQ R10, (24)(DI)
MOVQ R11, (32)(DI)
MOVQ R12, (40)(DI)
MOVQ R13, (48)(DI)
MOVQ R14, (56)(DI)
MOVQ 0(SP), BP
// NOW DI needs to be reduced if > p
RET