1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-25 08:31:21 +00:00
nobs/dh/sidh/internal/p434/core.go

287 lines
8.2 KiB
Go

// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots.
package p434
import (
. "github.com/henrydcase/nobs/dh/sidh/common"
)
func init() {
HasADXandBMI2 = false
}
// -----------------------------------------------------------------------------
// Functions for traversing isogeny trees acoording to strategy. Key type 'A' is
//
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
// for public key generation.
func traverseTreePublicKeyA(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint) {
var points = make([]ProjectivePoint, 0, 8)
var indices = make([]int, 0, 8)
var i, sIdx int
var phi isogeny4
cparam := CalcCurveParamsEquiv4(curve)
strat := params.A.IsogenyStrategy
stratSz := len(strat)
for j := 1; j <= stratSz; j++ {
for i <= stratSz-j {
points = append(points, *xR)
indices = append(indices, i)
k := strat[sIdx]
sIdx++
Pow2k(xR, &cparam, 2*k)
i += int(k)
}
cparam = phi.GenerateCurve(xR)
for k := 0; k < len(points); k++ {
points[k] = phi.EvaluatePoint(&points[k])
}
*phiP = phi.EvaluatePoint(phiP)
*phiQ = phi.EvaluatePoint(phiQ)
*phiR = phi.EvaluatePoint(phiR)
// pop xR from points
*xR, points = points[len(points)-1], points[:len(points)-1]
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
}
}
// Traverses isogeny tree in order to compute xR needed
// for public key generation.
func traverseTreeSharedKeyA(curve *ProjectiveCurveParameters, xR *ProjectivePoint) {
var points = make([]ProjectivePoint, 0, 8)
var indices = make([]int, 0, 8)
var i, sIdx int
var phi isogeny4
cparam := CalcCurveParamsEquiv4(curve)
strat := params.A.IsogenyStrategy
stratSz := len(strat)
for j := 1; j <= stratSz; j++ {
for i <= stratSz-j {
points = append(points, *xR)
indices = append(indices, i)
k := strat[sIdx]
sIdx++
Pow2k(xR, &cparam, 2*k)
i += int(k)
}
cparam = phi.GenerateCurve(xR)
for k := 0; k < len(points); k++ {
points[k] = phi.EvaluatePoint(&points[k])
}
// pop xR from points
*xR, points = points[len(points)-1], points[:len(points)-1]
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
}
}
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
// for public key generation.
func traverseTreePublicKeyB(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint) {
var points = make([]ProjectivePoint, 0, 8)
var indices = make([]int, 0, 8)
var i, sIdx int
var phi isogeny3
cparam := CalcCurveParamsEquiv3(curve)
strat := params.B.IsogenyStrategy
stratSz := len(strat)
for j := 1; j <= stratSz; j++ {
for i <= stratSz-j {
points = append(points, *xR)
indices = append(indices, i)
k := strat[sIdx]
sIdx++
Pow3k(xR, &cparam, k)
i += int(k)
}
cparam = phi.GenerateCurve(xR)
for k := 0; k < len(points); k++ {
points[k] = phi.EvaluatePoint(&points[k])
}
*phiP = phi.EvaluatePoint(phiP)
*phiQ = phi.EvaluatePoint(phiQ)
*phiR = phi.EvaluatePoint(phiR)
// pop xR from points
*xR, points = points[len(points)-1], points[:len(points)-1]
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
}
}
// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
// for public key generation.
func traverseTreeSharedKeyB(curve *ProjectiveCurveParameters, xR *ProjectivePoint) {
var points = make([]ProjectivePoint, 0, 8)
var indices = make([]int, 0, 8)
var i, sIdx int
var phi isogeny3
cparam := CalcCurveParamsEquiv3(curve)
strat := params.B.IsogenyStrategy
stratSz := len(strat)
for j := 1; j <= stratSz; j++ {
for i <= stratSz-j {
points = append(points, *xR)
indices = append(indices, i)
k := strat[sIdx]
sIdx++
Pow3k(xR, &cparam, k)
i += int(k)
}
cparam = phi.GenerateCurve(xR)
for k := 0; k < len(points); k++ {
points[k] = phi.EvaluatePoint(&points[k])
}
// pop xR from points
*xR, points = points[len(points)-1], points[:len(points)-1]
i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
}
}
// Generate a public key in the 2-torsion group. Public key is a set
// of three x-coordinates: xP,xQ,x(P-Q), where P,Q are points on E_a(Fp2)
func PublicKeyGenA(pub3Pt *[3]Fp2, prvBytes []byte) {
var xPA, xQA, xRA ProjectivePoint
var xPB, xQB, xRB, xR ProjectivePoint
var invZP, invZQ, invZR Fp2
var phi isogeny4
// Load points for A
xPA = ProjectivePoint{X: params.A.AffineP, Z: params.OneFp2}
xQA = ProjectivePoint{X: params.A.AffineQ, Z: params.OneFp2}
xRA = ProjectivePoint{X: params.A.AffineR, Z: params.OneFp2}
// Load points for B
xRB = ProjectivePoint{X: params.B.AffineR, Z: params.OneFp2}
xQB = ProjectivePoint{X: params.B.AffineQ, Z: params.OneFp2}
xPB = ProjectivePoint{X: params.B.AffineP, Z: params.OneFp2}
// Find isogeny kernel
xR = ScalarMul3Pt(&params.InitCurve, &xPA, &xQA, &xRA, params.A.SecretBitLen, prvBytes)
traverseTreePublicKeyA(&params.InitCurve, &xR, &xPB, &xQB, &xRB)
// Secret isogeny
phi.GenerateCurve(&xR)
xPA = phi.EvaluatePoint(&xPB)
xQA = phi.EvaluatePoint(&xQB)
xRA = phi.EvaluatePoint(&xRB)
Fp2Batch3Inv(&xPA.Z, &xQA.Z, &xRA.Z, &invZP, &invZQ, &invZR)
mul(&pub3Pt[0], &xPA.X, &invZP)
mul(&pub3Pt[1], &xQA.X, &invZQ)
mul(&pub3Pt[2], &xRA.X, &invZR)
}
// Generate a public key in the 2-torsion group. Public key is a set
// of three x-coordinates: xP,xQ,x(P-Q), where P,Q are points on E_a(Fp2)
func PublicKeyGenB(pub3Pt *[3]Fp2, prvBytes []byte) {
var xPB, xQB, xRB, xR ProjectivePoint
var xPA, xQA, xRA ProjectivePoint
var invZP, invZQ, invZR Fp2
var phi isogeny3
// Load points for B
xRB = ProjectivePoint{X: params.B.AffineR, Z: params.OneFp2}
xQB = ProjectivePoint{X: params.B.AffineQ, Z: params.OneFp2}
xPB = ProjectivePoint{X: params.B.AffineP, Z: params.OneFp2}
// Load points for A
xPA = ProjectivePoint{X: params.A.AffineP, Z: params.OneFp2}
xQA = ProjectivePoint{X: params.A.AffineQ, Z: params.OneFp2}
xRA = ProjectivePoint{X: params.A.AffineR, Z: params.OneFp2}
// Find isogeny kernel
xR = ScalarMul3Pt(&params.InitCurve, &xPB, &xQB, &xRB, params.B.SecretBitLen, prvBytes)
traverseTreePublicKeyB(&params.InitCurve, &xR, &xPA, &xQA, &xRA)
phi.GenerateCurve(&xR)
xPB = phi.EvaluatePoint(&xPA)
xQB = phi.EvaluatePoint(&xQA)
xRB = phi.EvaluatePoint(&xRA)
Fp2Batch3Inv(&xPB.Z, &xQB.Z, &xRB.Z, &invZP, &invZQ, &invZR)
mul(&pub3Pt[0], &xPB.X, &invZP)
mul(&pub3Pt[1], &xQB.X, &invZQ)
mul(&pub3Pt[2], &xRB.X, &invZR)
}
// -----------------------------------------------------------------------------
// Key agreement functions
//
// Establishing shared keys in in 2-torsion group
func DeriveSecretA(ss, prv []byte, pub3Pt *[3]Fp2) {
var xP, xQ, xQmP ProjectivePoint
var xR ProjectivePoint
var phi isogeny4
var jInv Fp2
// Recover curve coefficients
cparam := params.InitCurve
RecoverCoordinateA(&cparam, &pub3Pt[0], &pub3Pt[1], &pub3Pt[2])
// Find kernel of the morphism
xP = ProjectivePoint{X: pub3Pt[0], Z: params.OneFp2}
xQ = ProjectivePoint{X: pub3Pt[1], Z: params.OneFp2}
xQmP = ProjectivePoint{X: pub3Pt[2], Z: params.OneFp2}
xR = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, params.A.SecretBitLen, prv)
// Traverse isogeny tree
traverseTreeSharedKeyA(&cparam, &xR)
// Calculate j-invariant on isogeneus curve
c := phi.GenerateCurve(&xR)
RecoverCurveCoefficients4(&cparam, &c)
Jinvariant(&cparam, &jInv)
FromMontgomery(&jInv, &jInv)
Fp2ToBytes(ss, &jInv, params.Bytelen)
}
// Establishing shared keys in in 3-torsion group
func DeriveSecretB(ss, prv []byte, pub3Pt *[3]Fp2) {
var xP, xQ, xQmP ProjectivePoint
var xR ProjectivePoint
var phi isogeny3
var jInv Fp2
// Recover curve coefficients
cparam := params.InitCurve
RecoverCoordinateA(&cparam, &pub3Pt[0], &pub3Pt[1], &pub3Pt[2])
// Find kernel of the morphism
xP = ProjectivePoint{X: pub3Pt[0], Z: params.OneFp2}
xQ = ProjectivePoint{X: pub3Pt[1], Z: params.OneFp2}
xQmP = ProjectivePoint{X: pub3Pt[2], Z: params.OneFp2}
xR = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, params.B.SecretBitLen, prv)
// Traverse isogeny tree
traverseTreeSharedKeyB(&cparam, &xR)
// Calculate j-invariant on isogeneus curve
c := phi.GenerateCurve(&xR)
RecoverCurveCoefficients3(&cparam, &c)
Jinvariant(&cparam, &jInv)
FromMontgomery(&jInv, &jInv)
Fp2ToBytes(ss, &jInv, params.Bytelen)
}